Step |
Hyp |
Ref |
Expression |
1 |
|
ltadd1 |
|- ( ( A e. RR /\ C e. RR /\ B e. RR ) -> ( A < C <-> ( A + B ) < ( C + B ) ) ) |
2 |
1
|
3com23 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A < C <-> ( A + B ) < ( C + B ) ) ) |
3 |
2
|
3expa |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. RR ) -> ( A < C <-> ( A + B ) < ( C + B ) ) ) |
4 |
3
|
adantrr |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( A < C <-> ( A + B ) < ( C + B ) ) ) |
5 |
|
leadd2 |
|- ( ( B e. RR /\ D e. RR /\ C e. RR ) -> ( B <_ D <-> ( C + B ) <_ ( C + D ) ) ) |
6 |
5
|
3com23 |
|- ( ( B e. RR /\ C e. RR /\ D e. RR ) -> ( B <_ D <-> ( C + B ) <_ ( C + D ) ) ) |
7 |
6
|
3expb |
|- ( ( B e. RR /\ ( C e. RR /\ D e. RR ) ) -> ( B <_ D <-> ( C + B ) <_ ( C + D ) ) ) |
8 |
7
|
adantll |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( B <_ D <-> ( C + B ) <_ ( C + D ) ) ) |
9 |
4 8
|
anbi12d |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A < C /\ B <_ D ) <-> ( ( A + B ) < ( C + B ) /\ ( C + B ) <_ ( C + D ) ) ) ) |
10 |
|
readdcl |
|- ( ( A e. RR /\ B e. RR ) -> ( A + B ) e. RR ) |
11 |
10
|
adantr |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( A + B ) e. RR ) |
12 |
|
readdcl |
|- ( ( C e. RR /\ B e. RR ) -> ( C + B ) e. RR ) |
13 |
12
|
ancoms |
|- ( ( B e. RR /\ C e. RR ) -> ( C + B ) e. RR ) |
14 |
13
|
ad2ant2lr |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( C + B ) e. RR ) |
15 |
|
readdcl |
|- ( ( C e. RR /\ D e. RR ) -> ( C + D ) e. RR ) |
16 |
15
|
adantl |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( C + D ) e. RR ) |
17 |
|
ltletr |
|- ( ( ( A + B ) e. RR /\ ( C + B ) e. RR /\ ( C + D ) e. RR ) -> ( ( ( A + B ) < ( C + B ) /\ ( C + B ) <_ ( C + D ) ) -> ( A + B ) < ( C + D ) ) ) |
18 |
11 14 16 17
|
syl3anc |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( ( A + B ) < ( C + B ) /\ ( C + B ) <_ ( C + D ) ) -> ( A + B ) < ( C + D ) ) ) |
19 |
9 18
|
sylbid |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A < C /\ B <_ D ) -> ( A + B ) < ( C + D ) ) ) |