Step |
Hyp |
Ref |
Expression |
1 |
|
df-made |
|- _M = recs ( ( x e. _V |-> ( |s " ( ~P U. ran x X. ~P U. ran x ) ) ) ) |
2 |
1
|
tfr2 |
|- ( A e. On -> ( _M ` A ) = ( ( x e. _V |-> ( |s " ( ~P U. ran x X. ~P U. ran x ) ) ) ` ( _M |` A ) ) ) |
3 |
|
eqid |
|- ( x e. _V |-> ( |s " ( ~P U. ran x X. ~P U. ran x ) ) ) = ( x e. _V |-> ( |s " ( ~P U. ran x X. ~P U. ran x ) ) ) |
4 |
|
rneq |
|- ( x = ( _M |` A ) -> ran x = ran ( _M |` A ) ) |
5 |
|
df-ima |
|- ( _M " A ) = ran ( _M |` A ) |
6 |
4 5
|
eqtr4di |
|- ( x = ( _M |` A ) -> ran x = ( _M " A ) ) |
7 |
6
|
unieqd |
|- ( x = ( _M |` A ) -> U. ran x = U. ( _M " A ) ) |
8 |
7
|
pweqd |
|- ( x = ( _M |` A ) -> ~P U. ran x = ~P U. ( _M " A ) ) |
9 |
8
|
sqxpeqd |
|- ( x = ( _M |` A ) -> ( ~P U. ran x X. ~P U. ran x ) = ( ~P U. ( _M " A ) X. ~P U. ( _M " A ) ) ) |
10 |
9
|
imaeq2d |
|- ( x = ( _M |` A ) -> ( |s " ( ~P U. ran x X. ~P U. ran x ) ) = ( |s " ( ~P U. ( _M " A ) X. ~P U. ( _M " A ) ) ) ) |
11 |
1
|
tfr1 |
|- _M Fn On |
12 |
|
fnfun |
|- ( _M Fn On -> Fun _M ) |
13 |
11 12
|
ax-mp |
|- Fun _M |
14 |
|
resfunexg |
|- ( ( Fun _M /\ A e. On ) -> ( _M |` A ) e. _V ) |
15 |
13 14
|
mpan |
|- ( A e. On -> ( _M |` A ) e. _V ) |
16 |
|
scutf |
|- |s : < No |
17 |
|
ffun |
|- ( |s : < No -> Fun |s ) |
18 |
16 17
|
ax-mp |
|- Fun |s |
19 |
|
funimaexg |
|- ( ( Fun _M /\ A e. On ) -> ( _M " A ) e. _V ) |
20 |
13 19
|
mpan |
|- ( A e. On -> ( _M " A ) e. _V ) |
21 |
|
uniexg |
|- ( ( _M " A ) e. _V -> U. ( _M " A ) e. _V ) |
22 |
|
pwexg |
|- ( U. ( _M " A ) e. _V -> ~P U. ( _M " A ) e. _V ) |
23 |
20 21 22
|
3syl |
|- ( A e. On -> ~P U. ( _M " A ) e. _V ) |
24 |
23 23
|
xpexd |
|- ( A e. On -> ( ~P U. ( _M " A ) X. ~P U. ( _M " A ) ) e. _V ) |
25 |
|
funimaexg |
|- ( ( Fun |s /\ ( ~P U. ( _M " A ) X. ~P U. ( _M " A ) ) e. _V ) -> ( |s " ( ~P U. ( _M " A ) X. ~P U. ( _M " A ) ) ) e. _V ) |
26 |
18 24 25
|
sylancr |
|- ( A e. On -> ( |s " ( ~P U. ( _M " A ) X. ~P U. ( _M " A ) ) ) e. _V ) |
27 |
3 10 15 26
|
fvmptd3 |
|- ( A e. On -> ( ( x e. _V |-> ( |s " ( ~P U. ran x X. ~P U. ran x ) ) ) ` ( _M |` A ) ) = ( |s " ( ~P U. ( _M " A ) X. ~P U. ( _M " A ) ) ) ) |
28 |
2 27
|
eqtrd |
|- ( A e. On -> ( _M ` A ) = ( |s " ( ~P U. ( _M " A ) X. ~P U. ( _M " A ) ) ) ) |