| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mapdh.q |  |-  Q = ( 0g ` C ) | 
						
							| 2 |  | mapdh.i |  |-  I = ( x e. _V |-> if ( ( 2nd ` x ) = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) ) | 
						
							| 3 |  | mapdh.h |  |-  H = ( LHyp ` K ) | 
						
							| 4 |  | mapdh.m |  |-  M = ( ( mapd ` K ) ` W ) | 
						
							| 5 |  | mapdh.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 6 |  | mapdh.v |  |-  V = ( Base ` U ) | 
						
							| 7 |  | mapdh.s |  |-  .- = ( -g ` U ) | 
						
							| 8 |  | mapdhc.o |  |-  .0. = ( 0g ` U ) | 
						
							| 9 |  | mapdh.n |  |-  N = ( LSpan ` U ) | 
						
							| 10 |  | mapdh.c |  |-  C = ( ( LCDual ` K ) ` W ) | 
						
							| 11 |  | mapdh.d |  |-  D = ( Base ` C ) | 
						
							| 12 |  | mapdh.r |  |-  R = ( -g ` C ) | 
						
							| 13 |  | mapdh.j |  |-  J = ( LSpan ` C ) | 
						
							| 14 |  | mapdh.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 15 |  | mapdhc.f |  |-  ( ph -> F e. D ) | 
						
							| 16 |  | mapdh.mn |  |-  ( ph -> ( M ` ( N ` { X } ) ) = ( J ` { F } ) ) | 
						
							| 17 |  | mapdhcl.x |  |-  ( ph -> X e. ( V \ { .0. } ) ) | 
						
							| 18 |  | mapdh.p |  |-  .+ = ( +g ` U ) | 
						
							| 19 |  | mapdh.a |  |-  .+b = ( +g ` C ) | 
						
							| 20 |  | mapdh6c.y |  |-  ( ph -> Y e. V ) | 
						
							| 21 |  | mapdh6c.z |  |-  ( ph -> Z = .0. ) | 
						
							| 22 |  | mapdh6c.ne |  |-  ( ph -> -. X e. ( N ` { Y , Z } ) ) | 
						
							| 23 | 3 10 14 | lcdlmod |  |-  ( ph -> C e. LMod ) | 
						
							| 24 |  | lmodgrp |  |-  ( C e. LMod -> C e. Grp ) | 
						
							| 25 | 23 24 | syl |  |-  ( ph -> C e. Grp ) | 
						
							| 26 | 3 5 14 | dvhlvec |  |-  ( ph -> U e. LVec ) | 
						
							| 27 | 17 | eldifad |  |-  ( ph -> X e. V ) | 
						
							| 28 | 3 5 14 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 29 | 6 8 | lmod0vcl |  |-  ( U e. LMod -> .0. e. V ) | 
						
							| 30 | 28 29 | syl |  |-  ( ph -> .0. e. V ) | 
						
							| 31 | 21 30 | eqeltrd |  |-  ( ph -> Z e. V ) | 
						
							| 32 | 6 9 26 27 20 31 22 | lspindpi |  |-  ( ph -> ( ( N ` { X } ) =/= ( N ` { Y } ) /\ ( N ` { X } ) =/= ( N ` { Z } ) ) ) | 
						
							| 33 | 32 | simpld |  |-  ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) | 
						
							| 34 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 20 33 | mapdhcl |  |-  ( ph -> ( I ` <. X , F , Y >. ) e. D ) | 
						
							| 35 | 11 19 1 | grprid |  |-  ( ( C e. Grp /\ ( I ` <. X , F , Y >. ) e. D ) -> ( ( I ` <. X , F , Y >. ) .+b Q ) = ( I ` <. X , F , Y >. ) ) | 
						
							| 36 | 25 34 35 | syl2anc |  |-  ( ph -> ( ( I ` <. X , F , Y >. ) .+b Q ) = ( I ` <. X , F , Y >. ) ) | 
						
							| 37 | 21 | oteq3d |  |-  ( ph -> <. X , F , Z >. = <. X , F , .0. >. ) | 
						
							| 38 | 37 | fveq2d |  |-  ( ph -> ( I ` <. X , F , Z >. ) = ( I ` <. X , F , .0. >. ) ) | 
						
							| 39 | 1 2 8 17 15 | mapdhval0 |  |-  ( ph -> ( I ` <. X , F , .0. >. ) = Q ) | 
						
							| 40 | 38 39 | eqtrd |  |-  ( ph -> ( I ` <. X , F , Z >. ) = Q ) | 
						
							| 41 | 40 | oveq2d |  |-  ( ph -> ( ( I ` <. X , F , Y >. ) .+b ( I ` <. X , F , Z >. ) ) = ( ( I ` <. X , F , Y >. ) .+b Q ) ) | 
						
							| 42 | 21 | oveq2d |  |-  ( ph -> ( Y .+ Z ) = ( Y .+ .0. ) ) | 
						
							| 43 |  | lmodgrp |  |-  ( U e. LMod -> U e. Grp ) | 
						
							| 44 | 28 43 | syl |  |-  ( ph -> U e. Grp ) | 
						
							| 45 | 6 18 8 | grprid |  |-  ( ( U e. Grp /\ Y e. V ) -> ( Y .+ .0. ) = Y ) | 
						
							| 46 | 44 20 45 | syl2anc |  |-  ( ph -> ( Y .+ .0. ) = Y ) | 
						
							| 47 | 42 46 | eqtrd |  |-  ( ph -> ( Y .+ Z ) = Y ) | 
						
							| 48 | 47 | oteq3d |  |-  ( ph -> <. X , F , ( Y .+ Z ) >. = <. X , F , Y >. ) | 
						
							| 49 | 48 | fveq2d |  |-  ( ph -> ( I ` <. X , F , ( Y .+ Z ) >. ) = ( I ` <. X , F , Y >. ) ) | 
						
							| 50 | 36 41 49 | 3eqtr4rd |  |-  ( ph -> ( I ` <. X , F , ( Y .+ Z ) >. ) = ( ( I ` <. X , F , Y >. ) .+b ( I ` <. X , F , Z >. ) ) ) |