| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mapfien.s |
|- S = { x e. ( B ^m A ) | x finSupp Z } |
| 2 |
|
mapfien.t |
|- T = { x e. ( D ^m C ) | x finSupp W } |
| 3 |
|
mapfien.w |
|- W = ( G ` Z ) |
| 4 |
|
mapfien.f |
|- ( ph -> F : C -1-1-onto-> A ) |
| 5 |
|
mapfien.g |
|- ( ph -> G : B -1-1-onto-> D ) |
| 6 |
|
mapfien.a |
|- ( ph -> A e. U ) |
| 7 |
|
mapfien.b |
|- ( ph -> B e. V ) |
| 8 |
|
mapfien.c |
|- ( ph -> C e. X ) |
| 9 |
|
mapfien.d |
|- ( ph -> D e. Y ) |
| 10 |
|
mapfien.z |
|- ( ph -> Z e. B ) |
| 11 |
10
|
adantr |
|- ( ( ph /\ g e. T ) -> Z e. B ) |
| 12 |
|
f1of |
|- ( G : B -1-1-onto-> D -> G : B --> D ) |
| 13 |
5 12
|
syl |
|- ( ph -> G : B --> D ) |
| 14 |
13 10
|
ffvelcdmd |
|- ( ph -> ( G ` Z ) e. D ) |
| 15 |
3 14
|
eqeltrid |
|- ( ph -> W e. D ) |
| 16 |
15
|
adantr |
|- ( ( ph /\ g e. T ) -> W e. D ) |
| 17 |
|
elrabi |
|- ( g e. { x e. ( D ^m C ) | x finSupp W } -> g e. ( D ^m C ) ) |
| 18 |
|
elmapi |
|- ( g e. ( D ^m C ) -> g : C --> D ) |
| 19 |
17 18
|
syl |
|- ( g e. { x e. ( D ^m C ) | x finSupp W } -> g : C --> D ) |
| 20 |
19 2
|
eleq2s |
|- ( g e. T -> g : C --> D ) |
| 21 |
20
|
adantl |
|- ( ( ph /\ g e. T ) -> g : C --> D ) |
| 22 |
|
f1ocnv |
|- ( G : B -1-1-onto-> D -> `' G : D -1-1-onto-> B ) |
| 23 |
|
f1of |
|- ( `' G : D -1-1-onto-> B -> `' G : D --> B ) |
| 24 |
5 22 23
|
3syl |
|- ( ph -> `' G : D --> B ) |
| 25 |
24
|
adantr |
|- ( ( ph /\ g e. T ) -> `' G : D --> B ) |
| 26 |
|
ssidd |
|- ( ( ph /\ g e. T ) -> D C_ D ) |
| 27 |
8
|
adantr |
|- ( ( ph /\ g e. T ) -> C e. X ) |
| 28 |
9
|
adantr |
|- ( ( ph /\ g e. T ) -> D e. Y ) |
| 29 |
|
breq1 |
|- ( x = g -> ( x finSupp W <-> g finSupp W ) ) |
| 30 |
29
|
elrab |
|- ( g e. { x e. ( D ^m C ) | x finSupp W } <-> ( g e. ( D ^m C ) /\ g finSupp W ) ) |
| 31 |
30
|
simprbi |
|- ( g e. { x e. ( D ^m C ) | x finSupp W } -> g finSupp W ) |
| 32 |
31 2
|
eleq2s |
|- ( g e. T -> g finSupp W ) |
| 33 |
32
|
adantl |
|- ( ( ph /\ g e. T ) -> g finSupp W ) |
| 34 |
5 10
|
jca |
|- ( ph -> ( G : B -1-1-onto-> D /\ Z e. B ) ) |
| 35 |
3
|
eqcomi |
|- ( G ` Z ) = W |
| 36 |
34 35
|
jctir |
|- ( ph -> ( ( G : B -1-1-onto-> D /\ Z e. B ) /\ ( G ` Z ) = W ) ) |
| 37 |
36
|
adantr |
|- ( ( ph /\ g e. T ) -> ( ( G : B -1-1-onto-> D /\ Z e. B ) /\ ( G ` Z ) = W ) ) |
| 38 |
|
f1ocnvfv |
|- ( ( G : B -1-1-onto-> D /\ Z e. B ) -> ( ( G ` Z ) = W -> ( `' G ` W ) = Z ) ) |
| 39 |
38
|
imp |
|- ( ( ( G : B -1-1-onto-> D /\ Z e. B ) /\ ( G ` Z ) = W ) -> ( `' G ` W ) = Z ) |
| 40 |
37 39
|
syl |
|- ( ( ph /\ g e. T ) -> ( `' G ` W ) = Z ) |
| 41 |
11 16 21 25 26 27 28 33 40
|
fsuppcor |
|- ( ( ph /\ g e. T ) -> ( `' G o. g ) finSupp Z ) |
| 42 |
|
f1ocnv |
|- ( F : C -1-1-onto-> A -> `' F : A -1-1-onto-> C ) |
| 43 |
|
f1of1 |
|- ( `' F : A -1-1-onto-> C -> `' F : A -1-1-> C ) |
| 44 |
4 42 43
|
3syl |
|- ( ph -> `' F : A -1-1-> C ) |
| 45 |
44
|
adantr |
|- ( ( ph /\ g e. T ) -> `' F : A -1-1-> C ) |
| 46 |
13 7
|
jca |
|- ( ph -> ( G : B --> D /\ B e. V ) ) |
| 47 |
|
fex |
|- ( ( G : B --> D /\ B e. V ) -> G e. _V ) |
| 48 |
|
cnvexg |
|- ( G e. _V -> `' G e. _V ) |
| 49 |
46 47 48
|
3syl |
|- ( ph -> `' G e. _V ) |
| 50 |
|
coexg |
|- ( ( `' G e. _V /\ g e. T ) -> ( `' G o. g ) e. _V ) |
| 51 |
49 50
|
sylan |
|- ( ( ph /\ g e. T ) -> ( `' G o. g ) e. _V ) |
| 52 |
41 45 11 51
|
fsuppco |
|- ( ( ph /\ g e. T ) -> ( ( `' G o. g ) o. `' F ) finSupp Z ) |