| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mapfien.s |
⊢ 𝑆 = { 𝑥 ∈ ( 𝐵 ↑m 𝐴 ) ∣ 𝑥 finSupp 𝑍 } |
| 2 |
|
mapfien.t |
⊢ 𝑇 = { 𝑥 ∈ ( 𝐷 ↑m 𝐶 ) ∣ 𝑥 finSupp 𝑊 } |
| 3 |
|
mapfien.w |
⊢ 𝑊 = ( 𝐺 ‘ 𝑍 ) |
| 4 |
|
mapfien.f |
⊢ ( 𝜑 → 𝐹 : 𝐶 –1-1-onto→ 𝐴 ) |
| 5 |
|
mapfien.g |
⊢ ( 𝜑 → 𝐺 : 𝐵 –1-1-onto→ 𝐷 ) |
| 6 |
|
mapfien.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) |
| 7 |
|
mapfien.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) |
| 8 |
|
mapfien.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) |
| 9 |
|
mapfien.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑌 ) |
| 10 |
|
mapfien.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
| 11 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → 𝑍 ∈ 𝐵 ) |
| 12 |
|
f1of |
⊢ ( 𝐺 : 𝐵 –1-1-onto→ 𝐷 → 𝐺 : 𝐵 ⟶ 𝐷 ) |
| 13 |
5 12
|
syl |
⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝐷 ) |
| 14 |
13 10
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑍 ) ∈ 𝐷 ) |
| 15 |
3 14
|
eqeltrid |
⊢ ( 𝜑 → 𝑊 ∈ 𝐷 ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → 𝑊 ∈ 𝐷 ) |
| 17 |
|
elrabi |
⊢ ( 𝑔 ∈ { 𝑥 ∈ ( 𝐷 ↑m 𝐶 ) ∣ 𝑥 finSupp 𝑊 } → 𝑔 ∈ ( 𝐷 ↑m 𝐶 ) ) |
| 18 |
|
elmapi |
⊢ ( 𝑔 ∈ ( 𝐷 ↑m 𝐶 ) → 𝑔 : 𝐶 ⟶ 𝐷 ) |
| 19 |
17 18
|
syl |
⊢ ( 𝑔 ∈ { 𝑥 ∈ ( 𝐷 ↑m 𝐶 ) ∣ 𝑥 finSupp 𝑊 } → 𝑔 : 𝐶 ⟶ 𝐷 ) |
| 20 |
19 2
|
eleq2s |
⊢ ( 𝑔 ∈ 𝑇 → 𝑔 : 𝐶 ⟶ 𝐷 ) |
| 21 |
20
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → 𝑔 : 𝐶 ⟶ 𝐷 ) |
| 22 |
|
f1ocnv |
⊢ ( 𝐺 : 𝐵 –1-1-onto→ 𝐷 → ◡ 𝐺 : 𝐷 –1-1-onto→ 𝐵 ) |
| 23 |
|
f1of |
⊢ ( ◡ 𝐺 : 𝐷 –1-1-onto→ 𝐵 → ◡ 𝐺 : 𝐷 ⟶ 𝐵 ) |
| 24 |
5 22 23
|
3syl |
⊢ ( 𝜑 → ◡ 𝐺 : 𝐷 ⟶ 𝐵 ) |
| 25 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → ◡ 𝐺 : 𝐷 ⟶ 𝐵 ) |
| 26 |
|
ssidd |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → 𝐷 ⊆ 𝐷 ) |
| 27 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → 𝐶 ∈ 𝑋 ) |
| 28 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → 𝐷 ∈ 𝑌 ) |
| 29 |
|
breq1 |
⊢ ( 𝑥 = 𝑔 → ( 𝑥 finSupp 𝑊 ↔ 𝑔 finSupp 𝑊 ) ) |
| 30 |
29
|
elrab |
⊢ ( 𝑔 ∈ { 𝑥 ∈ ( 𝐷 ↑m 𝐶 ) ∣ 𝑥 finSupp 𝑊 } ↔ ( 𝑔 ∈ ( 𝐷 ↑m 𝐶 ) ∧ 𝑔 finSupp 𝑊 ) ) |
| 31 |
30
|
simprbi |
⊢ ( 𝑔 ∈ { 𝑥 ∈ ( 𝐷 ↑m 𝐶 ) ∣ 𝑥 finSupp 𝑊 } → 𝑔 finSupp 𝑊 ) |
| 32 |
31 2
|
eleq2s |
⊢ ( 𝑔 ∈ 𝑇 → 𝑔 finSupp 𝑊 ) |
| 33 |
32
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → 𝑔 finSupp 𝑊 ) |
| 34 |
5 10
|
jca |
⊢ ( 𝜑 → ( 𝐺 : 𝐵 –1-1-onto→ 𝐷 ∧ 𝑍 ∈ 𝐵 ) ) |
| 35 |
3
|
eqcomi |
⊢ ( 𝐺 ‘ 𝑍 ) = 𝑊 |
| 36 |
34 35
|
jctir |
⊢ ( 𝜑 → ( ( 𝐺 : 𝐵 –1-1-onto→ 𝐷 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝐺 ‘ 𝑍 ) = 𝑊 ) ) |
| 37 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → ( ( 𝐺 : 𝐵 –1-1-onto→ 𝐷 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝐺 ‘ 𝑍 ) = 𝑊 ) ) |
| 38 |
|
f1ocnvfv |
⊢ ( ( 𝐺 : 𝐵 –1-1-onto→ 𝐷 ∧ 𝑍 ∈ 𝐵 ) → ( ( 𝐺 ‘ 𝑍 ) = 𝑊 → ( ◡ 𝐺 ‘ 𝑊 ) = 𝑍 ) ) |
| 39 |
38
|
imp |
⊢ ( ( ( 𝐺 : 𝐵 –1-1-onto→ 𝐷 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝐺 ‘ 𝑍 ) = 𝑊 ) → ( ◡ 𝐺 ‘ 𝑊 ) = 𝑍 ) |
| 40 |
37 39
|
syl |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → ( ◡ 𝐺 ‘ 𝑊 ) = 𝑍 ) |
| 41 |
11 16 21 25 26 27 28 33 40
|
fsuppcor |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → ( ◡ 𝐺 ∘ 𝑔 ) finSupp 𝑍 ) |
| 42 |
|
f1ocnv |
⊢ ( 𝐹 : 𝐶 –1-1-onto→ 𝐴 → ◡ 𝐹 : 𝐴 –1-1-onto→ 𝐶 ) |
| 43 |
|
f1of1 |
⊢ ( ◡ 𝐹 : 𝐴 –1-1-onto→ 𝐶 → ◡ 𝐹 : 𝐴 –1-1→ 𝐶 ) |
| 44 |
4 42 43
|
3syl |
⊢ ( 𝜑 → ◡ 𝐹 : 𝐴 –1-1→ 𝐶 ) |
| 45 |
44
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → ◡ 𝐹 : 𝐴 –1-1→ 𝐶 ) |
| 46 |
13 7
|
jca |
⊢ ( 𝜑 → ( 𝐺 : 𝐵 ⟶ 𝐷 ∧ 𝐵 ∈ 𝑉 ) ) |
| 47 |
|
fex |
⊢ ( ( 𝐺 : 𝐵 ⟶ 𝐷 ∧ 𝐵 ∈ 𝑉 ) → 𝐺 ∈ V ) |
| 48 |
|
cnvexg |
⊢ ( 𝐺 ∈ V → ◡ 𝐺 ∈ V ) |
| 49 |
46 47 48
|
3syl |
⊢ ( 𝜑 → ◡ 𝐺 ∈ V ) |
| 50 |
|
coexg |
⊢ ( ( ◡ 𝐺 ∈ V ∧ 𝑔 ∈ 𝑇 ) → ( ◡ 𝐺 ∘ 𝑔 ) ∈ V ) |
| 51 |
49 50
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → ( ◡ 𝐺 ∘ 𝑔 ) ∈ V ) |
| 52 |
41 45 11 51
|
fsuppco |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) finSupp 𝑍 ) |