Metamath Proof Explorer


Theorem mul4sqlem

Description: Lemma for mul4sq : algebraic manipulations. The extra assumptions involving M are for a part of 4sqlem17 which needs to know not just that the product is a sum of squares, but also that it preserves divisibility by M . (Contributed by Mario Carneiro, 14-Jul-2014)

Ref Expression
Hypotheses 4sq.1
|- S = { n | E. x e. ZZ E. y e. ZZ E. z e. ZZ E. w e. ZZ n = ( ( ( x ^ 2 ) + ( y ^ 2 ) ) + ( ( z ^ 2 ) + ( w ^ 2 ) ) ) }
mul4sq.1
|- ( ph -> A e. Z[i] )
mul4sq.2
|- ( ph -> B e. Z[i] )
mul4sq.3
|- ( ph -> C e. Z[i] )
mul4sq.4
|- ( ph -> D e. Z[i] )
mul4sq.5
|- X = ( ( ( abs ` A ) ^ 2 ) + ( ( abs ` B ) ^ 2 ) )
mul4sq.6
|- Y = ( ( ( abs ` C ) ^ 2 ) + ( ( abs ` D ) ^ 2 ) )
mul4sq.7
|- ( ph -> M e. NN )
mul4sq.8
|- ( ph -> ( ( A - C ) / M ) e. Z[i] )
mul4sq.9
|- ( ph -> ( ( B - D ) / M ) e. Z[i] )
mul4sq.10
|- ( ph -> ( X / M ) e. NN0 )
Assertion mul4sqlem
|- ( ph -> ( ( X / M ) x. ( Y / M ) ) e. S )

Proof

Step Hyp Ref Expression
1 4sq.1
 |-  S = { n | E. x e. ZZ E. y e. ZZ E. z e. ZZ E. w e. ZZ n = ( ( ( x ^ 2 ) + ( y ^ 2 ) ) + ( ( z ^ 2 ) + ( w ^ 2 ) ) ) }
2 mul4sq.1
 |-  ( ph -> A e. Z[i] )
3 mul4sq.2
 |-  ( ph -> B e. Z[i] )
4 mul4sq.3
 |-  ( ph -> C e. Z[i] )
5 mul4sq.4
 |-  ( ph -> D e. Z[i] )
6 mul4sq.5
 |-  X = ( ( ( abs ` A ) ^ 2 ) + ( ( abs ` B ) ^ 2 ) )
7 mul4sq.6
 |-  Y = ( ( ( abs ` C ) ^ 2 ) + ( ( abs ` D ) ^ 2 ) )
8 mul4sq.7
 |-  ( ph -> M e. NN )
9 mul4sq.8
 |-  ( ph -> ( ( A - C ) / M ) e. Z[i] )
10 mul4sq.9
 |-  ( ph -> ( ( B - D ) / M ) e. Z[i] )
11 mul4sq.10
 |-  ( ph -> ( X / M ) e. NN0 )
12 gzcn
 |-  ( A e. Z[i] -> A e. CC )
13 2 12 syl
 |-  ( ph -> A e. CC )
14 gzcn
 |-  ( C e. Z[i] -> C e. CC )
15 4 14 syl
 |-  ( ph -> C e. CC )
16 13 15 mulcld
 |-  ( ph -> ( A x. C ) e. CC )
17 16 absvalsqd
 |-  ( ph -> ( ( abs ` ( A x. C ) ) ^ 2 ) = ( ( A x. C ) x. ( * ` ( A x. C ) ) ) )
18 16 cjcld
 |-  ( ph -> ( * ` ( A x. C ) ) e. CC )
19 16 18 mulcld
 |-  ( ph -> ( ( A x. C ) x. ( * ` ( A x. C ) ) ) e. CC )
20 17 19 eqeltrd
 |-  ( ph -> ( ( abs ` ( A x. C ) ) ^ 2 ) e. CC )
21 gzcn
 |-  ( B e. Z[i] -> B e. CC )
22 3 21 syl
 |-  ( ph -> B e. CC )
23 gzcn
 |-  ( D e. Z[i] -> D e. CC )
24 5 23 syl
 |-  ( ph -> D e. CC )
25 22 24 mulcld
 |-  ( ph -> ( B x. D ) e. CC )
26 25 absvalsqd
 |-  ( ph -> ( ( abs ` ( B x. D ) ) ^ 2 ) = ( ( B x. D ) x. ( * ` ( B x. D ) ) ) )
27 25 cjcld
 |-  ( ph -> ( * ` ( B x. D ) ) e. CC )
28 25 27 mulcld
 |-  ( ph -> ( ( B x. D ) x. ( * ` ( B x. D ) ) ) e. CC )
29 26 28 eqeltrd
 |-  ( ph -> ( ( abs ` ( B x. D ) ) ^ 2 ) e. CC )
30 20 29 addcld
 |-  ( ph -> ( ( ( abs ` ( A x. C ) ) ^ 2 ) + ( ( abs ` ( B x. D ) ) ^ 2 ) ) e. CC )
31 13 cjcld
 |-  ( ph -> ( * ` A ) e. CC )
32 31 15 mulcld
 |-  ( ph -> ( ( * ` A ) x. C ) e. CC )
33 22 cjcld
 |-  ( ph -> ( * ` B ) e. CC )
34 33 24 mulcld
 |-  ( ph -> ( ( * ` B ) x. D ) e. CC )
35 32 34 mulcld
 |-  ( ph -> ( ( ( * ` A ) x. C ) x. ( ( * ` B ) x. D ) ) e. CC )
36 15 cjcld
 |-  ( ph -> ( * ` C ) e. CC )
37 22 36 mulcld
 |-  ( ph -> ( B x. ( * ` C ) ) e. CC )
38 24 cjcld
 |-  ( ph -> ( * ` D ) e. CC )
39 13 38 mulcld
 |-  ( ph -> ( A x. ( * ` D ) ) e. CC )
40 37 39 mulcld
 |-  ( ph -> ( ( B x. ( * ` C ) ) x. ( A x. ( * ` D ) ) ) e. CC )
41 35 40 addcld
 |-  ( ph -> ( ( ( ( * ` A ) x. C ) x. ( ( * ` B ) x. D ) ) + ( ( B x. ( * ` C ) ) x. ( A x. ( * ` D ) ) ) ) e. CC )
42 13 24 mulcld
 |-  ( ph -> ( A x. D ) e. CC )
43 42 absvalsqd
 |-  ( ph -> ( ( abs ` ( A x. D ) ) ^ 2 ) = ( ( A x. D ) x. ( * ` ( A x. D ) ) ) )
44 42 cjcld
 |-  ( ph -> ( * ` ( A x. D ) ) e. CC )
45 42 44 mulcld
 |-  ( ph -> ( ( A x. D ) x. ( * ` ( A x. D ) ) ) e. CC )
46 43 45 eqeltrd
 |-  ( ph -> ( ( abs ` ( A x. D ) ) ^ 2 ) e. CC )
47 22 15 mulcld
 |-  ( ph -> ( B x. C ) e. CC )
48 47 absvalsqd
 |-  ( ph -> ( ( abs ` ( B x. C ) ) ^ 2 ) = ( ( B x. C ) x. ( * ` ( B x. C ) ) ) )
49 47 cjcld
 |-  ( ph -> ( * ` ( B x. C ) ) e. CC )
50 47 49 mulcld
 |-  ( ph -> ( ( B x. C ) x. ( * ` ( B x. C ) ) ) e. CC )
51 48 50 eqeltrd
 |-  ( ph -> ( ( abs ` ( B x. C ) ) ^ 2 ) e. CC )
52 46 51 addcld
 |-  ( ph -> ( ( ( abs ` ( A x. D ) ) ^ 2 ) + ( ( abs ` ( B x. C ) ) ^ 2 ) ) e. CC )
53 30 41 52 ppncand
 |-  ( ph -> ( ( ( ( ( abs ` ( A x. C ) ) ^ 2 ) + ( ( abs ` ( B x. D ) ) ^ 2 ) ) + ( ( ( ( * ` A ) x. C ) x. ( ( * ` B ) x. D ) ) + ( ( B x. ( * ` C ) ) x. ( A x. ( * ` D ) ) ) ) ) + ( ( ( ( abs ` ( A x. D ) ) ^ 2 ) + ( ( abs ` ( B x. C ) ) ^ 2 ) ) - ( ( ( ( * ` A ) x. C ) x. ( ( * ` B ) x. D ) ) + ( ( B x. ( * ` C ) ) x. ( A x. ( * ` D ) ) ) ) ) ) = ( ( ( ( abs ` ( A x. C ) ) ^ 2 ) + ( ( abs ` ( B x. D ) ) ^ 2 ) ) + ( ( ( abs ` ( A x. D ) ) ^ 2 ) + ( ( abs ` ( B x. C ) ) ^ 2 ) ) ) )
54 22 38 mulcld
 |-  ( ph -> ( B x. ( * ` D ) ) e. CC )
55 32 54 addcld
 |-  ( ph -> ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) e. CC )
56 55 absvalsqd
 |-  ( ph -> ( ( abs ` ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) ) ^ 2 ) = ( ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) x. ( * ` ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) ) ) )
57 32 54 cjaddd
 |-  ( ph -> ( * ` ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) ) = ( ( * ` ( ( * ` A ) x. C ) ) + ( * ` ( B x. ( * ` D ) ) ) ) )
58 31 15 cjmuld
 |-  ( ph -> ( * ` ( ( * ` A ) x. C ) ) = ( ( * ` ( * ` A ) ) x. ( * ` C ) ) )
59 13 cjcjd
 |-  ( ph -> ( * ` ( * ` A ) ) = A )
60 59 oveq1d
 |-  ( ph -> ( ( * ` ( * ` A ) ) x. ( * ` C ) ) = ( A x. ( * ` C ) ) )
61 58 60 eqtrd
 |-  ( ph -> ( * ` ( ( * ` A ) x. C ) ) = ( A x. ( * ` C ) ) )
62 22 38 cjmuld
 |-  ( ph -> ( * ` ( B x. ( * ` D ) ) ) = ( ( * ` B ) x. ( * ` ( * ` D ) ) ) )
63 24 cjcjd
 |-  ( ph -> ( * ` ( * ` D ) ) = D )
64 63 oveq2d
 |-  ( ph -> ( ( * ` B ) x. ( * ` ( * ` D ) ) ) = ( ( * ` B ) x. D ) )
65 62 64 eqtrd
 |-  ( ph -> ( * ` ( B x. ( * ` D ) ) ) = ( ( * ` B ) x. D ) )
66 61 65 oveq12d
 |-  ( ph -> ( ( * ` ( ( * ` A ) x. C ) ) + ( * ` ( B x. ( * ` D ) ) ) ) = ( ( A x. ( * ` C ) ) + ( ( * ` B ) x. D ) ) )
67 57 66 eqtrd
 |-  ( ph -> ( * ` ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) ) = ( ( A x. ( * ` C ) ) + ( ( * ` B ) x. D ) ) )
68 67 oveq2d
 |-  ( ph -> ( ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) x. ( * ` ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) ) ) = ( ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) x. ( ( A x. ( * ` C ) ) + ( ( * ` B ) x. D ) ) ) )
69 13 36 mulcld
 |-  ( ph -> ( A x. ( * ` C ) ) e. CC )
70 32 69 34 adddid
 |-  ( ph -> ( ( ( * ` A ) x. C ) x. ( ( A x. ( * ` C ) ) + ( ( * ` B ) x. D ) ) ) = ( ( ( ( * ` A ) x. C ) x. ( A x. ( * ` C ) ) ) + ( ( ( * ` A ) x. C ) x. ( ( * ` B ) x. D ) ) ) )
71 15 31 13 36 mul4d
 |-  ( ph -> ( ( C x. ( * ` A ) ) x. ( A x. ( * ` C ) ) ) = ( ( C x. A ) x. ( ( * ` A ) x. ( * ` C ) ) ) )
72 31 15 mulcomd
 |-  ( ph -> ( ( * ` A ) x. C ) = ( C x. ( * ` A ) ) )
73 72 oveq1d
 |-  ( ph -> ( ( ( * ` A ) x. C ) x. ( A x. ( * ` C ) ) ) = ( ( C x. ( * ` A ) ) x. ( A x. ( * ` C ) ) ) )
74 13 15 mulcomd
 |-  ( ph -> ( A x. C ) = ( C x. A ) )
75 13 15 cjmuld
 |-  ( ph -> ( * ` ( A x. C ) ) = ( ( * ` A ) x. ( * ` C ) ) )
76 74 75 oveq12d
 |-  ( ph -> ( ( A x. C ) x. ( * ` ( A x. C ) ) ) = ( ( C x. A ) x. ( ( * ` A ) x. ( * ` C ) ) ) )
77 71 73 76 3eqtr4d
 |-  ( ph -> ( ( ( * ` A ) x. C ) x. ( A x. ( * ` C ) ) ) = ( ( A x. C ) x. ( * ` ( A x. C ) ) ) )
78 77 17 eqtr4d
 |-  ( ph -> ( ( ( * ` A ) x. C ) x. ( A x. ( * ` C ) ) ) = ( ( abs ` ( A x. C ) ) ^ 2 ) )
79 78 oveq1d
 |-  ( ph -> ( ( ( ( * ` A ) x. C ) x. ( A x. ( * ` C ) ) ) + ( ( ( * ` A ) x. C ) x. ( ( * ` B ) x. D ) ) ) = ( ( ( abs ` ( A x. C ) ) ^ 2 ) + ( ( ( * ` A ) x. C ) x. ( ( * ` B ) x. D ) ) ) )
80 70 79 eqtrd
 |-  ( ph -> ( ( ( * ` A ) x. C ) x. ( ( A x. ( * ` C ) ) + ( ( * ` B ) x. D ) ) ) = ( ( ( abs ` ( A x. C ) ) ^ 2 ) + ( ( ( * ` A ) x. C ) x. ( ( * ` B ) x. D ) ) ) )
81 54 69 34 adddid
 |-  ( ph -> ( ( B x. ( * ` D ) ) x. ( ( A x. ( * ` C ) ) + ( ( * ` B ) x. D ) ) ) = ( ( ( B x. ( * ` D ) ) x. ( A x. ( * ` C ) ) ) + ( ( B x. ( * ` D ) ) x. ( ( * ` B ) x. D ) ) ) )
82 13 36 mulcomd
 |-  ( ph -> ( A x. ( * ` C ) ) = ( ( * ` C ) x. A ) )
83 82 oveq2d
 |-  ( ph -> ( ( B x. ( * ` D ) ) x. ( A x. ( * ` C ) ) ) = ( ( B x. ( * ` D ) ) x. ( ( * ` C ) x. A ) ) )
84 22 38 36 13 mul4d
 |-  ( ph -> ( ( B x. ( * ` D ) ) x. ( ( * ` C ) x. A ) ) = ( ( B x. ( * ` C ) ) x. ( ( * ` D ) x. A ) ) )
85 38 13 mulcomd
 |-  ( ph -> ( ( * ` D ) x. A ) = ( A x. ( * ` D ) ) )
86 85 oveq2d
 |-  ( ph -> ( ( B x. ( * ` C ) ) x. ( ( * ` D ) x. A ) ) = ( ( B x. ( * ` C ) ) x. ( A x. ( * ` D ) ) ) )
87 83 84 86 3eqtrd
 |-  ( ph -> ( ( B x. ( * ` D ) ) x. ( A x. ( * ` C ) ) ) = ( ( B x. ( * ` C ) ) x. ( A x. ( * ` D ) ) ) )
88 22 38 24 33 mul4d
 |-  ( ph -> ( ( B x. ( * ` D ) ) x. ( D x. ( * ` B ) ) ) = ( ( B x. D ) x. ( ( * ` D ) x. ( * ` B ) ) ) )
89 33 24 mulcomd
 |-  ( ph -> ( ( * ` B ) x. D ) = ( D x. ( * ` B ) ) )
90 89 oveq2d
 |-  ( ph -> ( ( B x. ( * ` D ) ) x. ( ( * ` B ) x. D ) ) = ( ( B x. ( * ` D ) ) x. ( D x. ( * ` B ) ) ) )
91 22 24 cjmuld
 |-  ( ph -> ( * ` ( B x. D ) ) = ( ( * ` B ) x. ( * ` D ) ) )
92 33 38 mulcomd
 |-  ( ph -> ( ( * ` B ) x. ( * ` D ) ) = ( ( * ` D ) x. ( * ` B ) ) )
93 91 92 eqtrd
 |-  ( ph -> ( * ` ( B x. D ) ) = ( ( * ` D ) x. ( * ` B ) ) )
94 93 oveq2d
 |-  ( ph -> ( ( B x. D ) x. ( * ` ( B x. D ) ) ) = ( ( B x. D ) x. ( ( * ` D ) x. ( * ` B ) ) ) )
95 88 90 94 3eqtr4d
 |-  ( ph -> ( ( B x. ( * ` D ) ) x. ( ( * ` B ) x. D ) ) = ( ( B x. D ) x. ( * ` ( B x. D ) ) ) )
96 95 26 eqtr4d
 |-  ( ph -> ( ( B x. ( * ` D ) ) x. ( ( * ` B ) x. D ) ) = ( ( abs ` ( B x. D ) ) ^ 2 ) )
97 87 96 oveq12d
 |-  ( ph -> ( ( ( B x. ( * ` D ) ) x. ( A x. ( * ` C ) ) ) + ( ( B x. ( * ` D ) ) x. ( ( * ` B ) x. D ) ) ) = ( ( ( B x. ( * ` C ) ) x. ( A x. ( * ` D ) ) ) + ( ( abs ` ( B x. D ) ) ^ 2 ) ) )
98 81 97 eqtrd
 |-  ( ph -> ( ( B x. ( * ` D ) ) x. ( ( A x. ( * ` C ) ) + ( ( * ` B ) x. D ) ) ) = ( ( ( B x. ( * ` C ) ) x. ( A x. ( * ` D ) ) ) + ( ( abs ` ( B x. D ) ) ^ 2 ) ) )
99 80 98 oveq12d
 |-  ( ph -> ( ( ( ( * ` A ) x. C ) x. ( ( A x. ( * ` C ) ) + ( ( * ` B ) x. D ) ) ) + ( ( B x. ( * ` D ) ) x. ( ( A x. ( * ` C ) ) + ( ( * ` B ) x. D ) ) ) ) = ( ( ( ( abs ` ( A x. C ) ) ^ 2 ) + ( ( ( * ` A ) x. C ) x. ( ( * ` B ) x. D ) ) ) + ( ( ( B x. ( * ` C ) ) x. ( A x. ( * ` D ) ) ) + ( ( abs ` ( B x. D ) ) ^ 2 ) ) ) )
100 69 34 addcld
 |-  ( ph -> ( ( A x. ( * ` C ) ) + ( ( * ` B ) x. D ) ) e. CC )
101 32 54 100 adddird
 |-  ( ph -> ( ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) x. ( ( A x. ( * ` C ) ) + ( ( * ` B ) x. D ) ) ) = ( ( ( ( * ` A ) x. C ) x. ( ( A x. ( * ` C ) ) + ( ( * ` B ) x. D ) ) ) + ( ( B x. ( * ` D ) ) x. ( ( A x. ( * ` C ) ) + ( ( * ` B ) x. D ) ) ) ) )
102 20 29 35 40 add42d
 |-  ( ph -> ( ( ( ( abs ` ( A x. C ) ) ^ 2 ) + ( ( abs ` ( B x. D ) ) ^ 2 ) ) + ( ( ( ( * ` A ) x. C ) x. ( ( * ` B ) x. D ) ) + ( ( B x. ( * ` C ) ) x. ( A x. ( * ` D ) ) ) ) ) = ( ( ( ( abs ` ( A x. C ) ) ^ 2 ) + ( ( ( * ` A ) x. C ) x. ( ( * ` B ) x. D ) ) ) + ( ( ( B x. ( * ` C ) ) x. ( A x. ( * ` D ) ) ) + ( ( abs ` ( B x. D ) ) ^ 2 ) ) ) )
103 99 101 102 3eqtr4d
 |-  ( ph -> ( ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) x. ( ( A x. ( * ` C ) ) + ( ( * ` B ) x. D ) ) ) = ( ( ( ( abs ` ( A x. C ) ) ^ 2 ) + ( ( abs ` ( B x. D ) ) ^ 2 ) ) + ( ( ( ( * ` A ) x. C ) x. ( ( * ` B ) x. D ) ) + ( ( B x. ( * ` C ) ) x. ( A x. ( * ` D ) ) ) ) ) )
104 56 68 103 3eqtrd
 |-  ( ph -> ( ( abs ` ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) ) ^ 2 ) = ( ( ( ( abs ` ( A x. C ) ) ^ 2 ) + ( ( abs ` ( B x. D ) ) ^ 2 ) ) + ( ( ( ( * ` A ) x. C ) x. ( ( * ` B ) x. D ) ) + ( ( B x. ( * ` C ) ) x. ( A x. ( * ` D ) ) ) ) ) )
105 31 24 mulcld
 |-  ( ph -> ( ( * ` A ) x. D ) e. CC )
106 105 37 subcld
 |-  ( ph -> ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) e. CC )
107 106 absvalsqd
 |-  ( ph -> ( ( abs ` ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) ) ^ 2 ) = ( ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) x. ( * ` ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) ) ) )
108 cjsub
 |-  ( ( ( ( * ` A ) x. D ) e. CC /\ ( B x. ( * ` C ) ) e. CC ) -> ( * ` ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) ) = ( ( * ` ( ( * ` A ) x. D ) ) - ( * ` ( B x. ( * ` C ) ) ) ) )
109 105 37 108 syl2anc
 |-  ( ph -> ( * ` ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) ) = ( ( * ` ( ( * ` A ) x. D ) ) - ( * ` ( B x. ( * ` C ) ) ) ) )
110 31 24 cjmuld
 |-  ( ph -> ( * ` ( ( * ` A ) x. D ) ) = ( ( * ` ( * ` A ) ) x. ( * ` D ) ) )
111 59 oveq1d
 |-  ( ph -> ( ( * ` ( * ` A ) ) x. ( * ` D ) ) = ( A x. ( * ` D ) ) )
112 110 111 eqtrd
 |-  ( ph -> ( * ` ( ( * ` A ) x. D ) ) = ( A x. ( * ` D ) ) )
113 22 36 cjmuld
 |-  ( ph -> ( * ` ( B x. ( * ` C ) ) ) = ( ( * ` B ) x. ( * ` ( * ` C ) ) ) )
114 15 cjcjd
 |-  ( ph -> ( * ` ( * ` C ) ) = C )
115 114 oveq2d
 |-  ( ph -> ( ( * ` B ) x. ( * ` ( * ` C ) ) ) = ( ( * ` B ) x. C ) )
116 113 115 eqtrd
 |-  ( ph -> ( * ` ( B x. ( * ` C ) ) ) = ( ( * ` B ) x. C ) )
117 112 116 oveq12d
 |-  ( ph -> ( ( * ` ( ( * ` A ) x. D ) ) - ( * ` ( B x. ( * ` C ) ) ) ) = ( ( A x. ( * ` D ) ) - ( ( * ` B ) x. C ) ) )
118 109 117 eqtrd
 |-  ( ph -> ( * ` ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) ) = ( ( A x. ( * ` D ) ) - ( ( * ` B ) x. C ) ) )
119 118 oveq2d
 |-  ( ph -> ( ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) x. ( * ` ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) ) ) = ( ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) x. ( ( A x. ( * ` D ) ) - ( ( * ` B ) x. C ) ) ) )
120 33 15 mulcld
 |-  ( ph -> ( ( * ` B ) x. C ) e. CC )
121 39 120 subcld
 |-  ( ph -> ( ( A x. ( * ` D ) ) - ( ( * ` B ) x. C ) ) e. CC )
122 105 37 121 subdird
 |-  ( ph -> ( ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) x. ( ( A x. ( * ` D ) ) - ( ( * ` B ) x. C ) ) ) = ( ( ( ( * ` A ) x. D ) x. ( ( A x. ( * ` D ) ) - ( ( * ` B ) x. C ) ) ) - ( ( B x. ( * ` C ) ) x. ( ( A x. ( * ` D ) ) - ( ( * ` B ) x. C ) ) ) ) )
123 105 39 120 subdid
 |-  ( ph -> ( ( ( * ` A ) x. D ) x. ( ( A x. ( * ` D ) ) - ( ( * ` B ) x. C ) ) ) = ( ( ( ( * ` A ) x. D ) x. ( A x. ( * ` D ) ) ) - ( ( ( * ` A ) x. D ) x. ( ( * ` B ) x. C ) ) ) )
124 24 31 13 38 mul4d
 |-  ( ph -> ( ( D x. ( * ` A ) ) x. ( A x. ( * ` D ) ) ) = ( ( D x. A ) x. ( ( * ` A ) x. ( * ` D ) ) ) )
125 31 24 mulcomd
 |-  ( ph -> ( ( * ` A ) x. D ) = ( D x. ( * ` A ) ) )
126 125 oveq1d
 |-  ( ph -> ( ( ( * ` A ) x. D ) x. ( A x. ( * ` D ) ) ) = ( ( D x. ( * ` A ) ) x. ( A x. ( * ` D ) ) ) )
127 13 24 mulcomd
 |-  ( ph -> ( A x. D ) = ( D x. A ) )
128 13 24 cjmuld
 |-  ( ph -> ( * ` ( A x. D ) ) = ( ( * ` A ) x. ( * ` D ) ) )
129 127 128 oveq12d
 |-  ( ph -> ( ( A x. D ) x. ( * ` ( A x. D ) ) ) = ( ( D x. A ) x. ( ( * ` A ) x. ( * ` D ) ) ) )
130 124 126 129 3eqtr4d
 |-  ( ph -> ( ( ( * ` A ) x. D ) x. ( A x. ( * ` D ) ) ) = ( ( A x. D ) x. ( * ` ( A x. D ) ) ) )
131 130 43 eqtr4d
 |-  ( ph -> ( ( ( * ` A ) x. D ) x. ( A x. ( * ` D ) ) ) = ( ( abs ` ( A x. D ) ) ^ 2 ) )
132 33 15 mulcomd
 |-  ( ph -> ( ( * ` B ) x. C ) = ( C x. ( * ` B ) ) )
133 132 oveq2d
 |-  ( ph -> ( ( ( * ` A ) x. D ) x. ( ( * ` B ) x. C ) ) = ( ( ( * ` A ) x. D ) x. ( C x. ( * ` B ) ) ) )
134 31 24 15 33 mul4d
 |-  ( ph -> ( ( ( * ` A ) x. D ) x. ( C x. ( * ` B ) ) ) = ( ( ( * ` A ) x. C ) x. ( D x. ( * ` B ) ) ) )
135 24 33 mulcomd
 |-  ( ph -> ( D x. ( * ` B ) ) = ( ( * ` B ) x. D ) )
136 135 oveq2d
 |-  ( ph -> ( ( ( * ` A ) x. C ) x. ( D x. ( * ` B ) ) ) = ( ( ( * ` A ) x. C ) x. ( ( * ` B ) x. D ) ) )
137 133 134 136 3eqtrd
 |-  ( ph -> ( ( ( * ` A ) x. D ) x. ( ( * ` B ) x. C ) ) = ( ( ( * ` A ) x. C ) x. ( ( * ` B ) x. D ) ) )
138 131 137 oveq12d
 |-  ( ph -> ( ( ( ( * ` A ) x. D ) x. ( A x. ( * ` D ) ) ) - ( ( ( * ` A ) x. D ) x. ( ( * ` B ) x. C ) ) ) = ( ( ( abs ` ( A x. D ) ) ^ 2 ) - ( ( ( * ` A ) x. C ) x. ( ( * ` B ) x. D ) ) ) )
139 123 138 eqtrd
 |-  ( ph -> ( ( ( * ` A ) x. D ) x. ( ( A x. ( * ` D ) ) - ( ( * ` B ) x. C ) ) ) = ( ( ( abs ` ( A x. D ) ) ^ 2 ) - ( ( ( * ` A ) x. C ) x. ( ( * ` B ) x. D ) ) ) )
140 37 39 120 subdid
 |-  ( ph -> ( ( B x. ( * ` C ) ) x. ( ( A x. ( * ` D ) ) - ( ( * ` B ) x. C ) ) ) = ( ( ( B x. ( * ` C ) ) x. ( A x. ( * ` D ) ) ) - ( ( B x. ( * ` C ) ) x. ( ( * ` B ) x. C ) ) ) )
141 132 oveq2d
 |-  ( ph -> ( ( B x. ( * ` C ) ) x. ( ( * ` B ) x. C ) ) = ( ( B x. ( * ` C ) ) x. ( C x. ( * ` B ) ) ) )
142 22 36 15 33 mul4d
 |-  ( ph -> ( ( B x. ( * ` C ) ) x. ( C x. ( * ` B ) ) ) = ( ( B x. C ) x. ( ( * ` C ) x. ( * ` B ) ) ) )
143 36 33 mulcomd
 |-  ( ph -> ( ( * ` C ) x. ( * ` B ) ) = ( ( * ` B ) x. ( * ` C ) ) )
144 22 15 cjmuld
 |-  ( ph -> ( * ` ( B x. C ) ) = ( ( * ` B ) x. ( * ` C ) ) )
145 143 144 eqtr4d
 |-  ( ph -> ( ( * ` C ) x. ( * ` B ) ) = ( * ` ( B x. C ) ) )
146 145 oveq2d
 |-  ( ph -> ( ( B x. C ) x. ( ( * ` C ) x. ( * ` B ) ) ) = ( ( B x. C ) x. ( * ` ( B x. C ) ) ) )
147 141 142 146 3eqtrd
 |-  ( ph -> ( ( B x. ( * ` C ) ) x. ( ( * ` B ) x. C ) ) = ( ( B x. C ) x. ( * ` ( B x. C ) ) ) )
148 147 48 eqtr4d
 |-  ( ph -> ( ( B x. ( * ` C ) ) x. ( ( * ` B ) x. C ) ) = ( ( abs ` ( B x. C ) ) ^ 2 ) )
149 148 oveq2d
 |-  ( ph -> ( ( ( B x. ( * ` C ) ) x. ( A x. ( * ` D ) ) ) - ( ( B x. ( * ` C ) ) x. ( ( * ` B ) x. C ) ) ) = ( ( ( B x. ( * ` C ) ) x. ( A x. ( * ` D ) ) ) - ( ( abs ` ( B x. C ) ) ^ 2 ) ) )
150 140 149 eqtrd
 |-  ( ph -> ( ( B x. ( * ` C ) ) x. ( ( A x. ( * ` D ) ) - ( ( * ` B ) x. C ) ) ) = ( ( ( B x. ( * ` C ) ) x. ( A x. ( * ` D ) ) ) - ( ( abs ` ( B x. C ) ) ^ 2 ) ) )
151 139 150 oveq12d
 |-  ( ph -> ( ( ( ( * ` A ) x. D ) x. ( ( A x. ( * ` D ) ) - ( ( * ` B ) x. C ) ) ) - ( ( B x. ( * ` C ) ) x. ( ( A x. ( * ` D ) ) - ( ( * ` B ) x. C ) ) ) ) = ( ( ( ( abs ` ( A x. D ) ) ^ 2 ) - ( ( ( * ` A ) x. C ) x. ( ( * ` B ) x. D ) ) ) - ( ( ( B x. ( * ` C ) ) x. ( A x. ( * ` D ) ) ) - ( ( abs ` ( B x. C ) ) ^ 2 ) ) ) )
152 46 35 40 51 subadd4d
 |-  ( ph -> ( ( ( ( abs ` ( A x. D ) ) ^ 2 ) - ( ( ( * ` A ) x. C ) x. ( ( * ` B ) x. D ) ) ) - ( ( ( B x. ( * ` C ) ) x. ( A x. ( * ` D ) ) ) - ( ( abs ` ( B x. C ) ) ^ 2 ) ) ) = ( ( ( ( abs ` ( A x. D ) ) ^ 2 ) + ( ( abs ` ( B x. C ) ) ^ 2 ) ) - ( ( ( ( * ` A ) x. C ) x. ( ( * ` B ) x. D ) ) + ( ( B x. ( * ` C ) ) x. ( A x. ( * ` D ) ) ) ) ) )
153 122 151 152 3eqtrd
 |-  ( ph -> ( ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) x. ( ( A x. ( * ` D ) ) - ( ( * ` B ) x. C ) ) ) = ( ( ( ( abs ` ( A x. D ) ) ^ 2 ) + ( ( abs ` ( B x. C ) ) ^ 2 ) ) - ( ( ( ( * ` A ) x. C ) x. ( ( * ` B ) x. D ) ) + ( ( B x. ( * ` C ) ) x. ( A x. ( * ` D ) ) ) ) ) )
154 107 119 153 3eqtrd
 |-  ( ph -> ( ( abs ` ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) ) ^ 2 ) = ( ( ( ( abs ` ( A x. D ) ) ^ 2 ) + ( ( abs ` ( B x. C ) ) ^ 2 ) ) - ( ( ( ( * ` A ) x. C ) x. ( ( * ` B ) x. D ) ) + ( ( B x. ( * ` C ) ) x. ( A x. ( * ` D ) ) ) ) ) )
155 104 154 oveq12d
 |-  ( ph -> ( ( ( abs ` ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) ) ^ 2 ) + ( ( abs ` ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) ) ^ 2 ) ) = ( ( ( ( ( abs ` ( A x. C ) ) ^ 2 ) + ( ( abs ` ( B x. D ) ) ^ 2 ) ) + ( ( ( ( * ` A ) x. C ) x. ( ( * ` B ) x. D ) ) + ( ( B x. ( * ` C ) ) x. ( A x. ( * ` D ) ) ) ) ) + ( ( ( ( abs ` ( A x. D ) ) ^ 2 ) + ( ( abs ` ( B x. C ) ) ^ 2 ) ) - ( ( ( ( * ` A ) x. C ) x. ( ( * ` B ) x. D ) ) + ( ( B x. ( * ` C ) ) x. ( A x. ( * ` D ) ) ) ) ) ) )
156 13 31 mulcld
 |-  ( ph -> ( A x. ( * ` A ) ) e. CC )
157 22 33 mulcld
 |-  ( ph -> ( B x. ( * ` B ) ) e. CC )
158 15 36 mulcld
 |-  ( ph -> ( C x. ( * ` C ) ) e. CC )
159 24 38 mulcld
 |-  ( ph -> ( D x. ( * ` D ) ) e. CC )
160 158 159 addcld
 |-  ( ph -> ( ( C x. ( * ` C ) ) + ( D x. ( * ` D ) ) ) e. CC )
161 156 157 160 adddird
 |-  ( ph -> ( ( ( A x. ( * ` A ) ) + ( B x. ( * ` B ) ) ) x. ( ( C x. ( * ` C ) ) + ( D x. ( * ` D ) ) ) ) = ( ( ( A x. ( * ` A ) ) x. ( ( C x. ( * ` C ) ) + ( D x. ( * ` D ) ) ) ) + ( ( B x. ( * ` B ) ) x. ( ( C x. ( * ` C ) ) + ( D x. ( * ` D ) ) ) ) ) )
162 75 oveq2d
 |-  ( ph -> ( ( A x. C ) x. ( * ` ( A x. C ) ) ) = ( ( A x. C ) x. ( ( * ` A ) x. ( * ` C ) ) ) )
163 13 15 31 36 mul4d
 |-  ( ph -> ( ( A x. C ) x. ( ( * ` A ) x. ( * ` C ) ) ) = ( ( A x. ( * ` A ) ) x. ( C x. ( * ` C ) ) ) )
164 17 162 163 3eqtrd
 |-  ( ph -> ( ( abs ` ( A x. C ) ) ^ 2 ) = ( ( A x. ( * ` A ) ) x. ( C x. ( * ` C ) ) ) )
165 128 oveq2d
 |-  ( ph -> ( ( A x. D ) x. ( * ` ( A x. D ) ) ) = ( ( A x. D ) x. ( ( * ` A ) x. ( * ` D ) ) ) )
166 13 24 31 38 mul4d
 |-  ( ph -> ( ( A x. D ) x. ( ( * ` A ) x. ( * ` D ) ) ) = ( ( A x. ( * ` A ) ) x. ( D x. ( * ` D ) ) ) )
167 43 165 166 3eqtrd
 |-  ( ph -> ( ( abs ` ( A x. D ) ) ^ 2 ) = ( ( A x. ( * ` A ) ) x. ( D x. ( * ` D ) ) ) )
168 164 167 oveq12d
 |-  ( ph -> ( ( ( abs ` ( A x. C ) ) ^ 2 ) + ( ( abs ` ( A x. D ) ) ^ 2 ) ) = ( ( ( A x. ( * ` A ) ) x. ( C x. ( * ` C ) ) ) + ( ( A x. ( * ` A ) ) x. ( D x. ( * ` D ) ) ) ) )
169 156 158 159 adddid
 |-  ( ph -> ( ( A x. ( * ` A ) ) x. ( ( C x. ( * ` C ) ) + ( D x. ( * ` D ) ) ) ) = ( ( ( A x. ( * ` A ) ) x. ( C x. ( * ` C ) ) ) + ( ( A x. ( * ` A ) ) x. ( D x. ( * ` D ) ) ) ) )
170 168 169 eqtr4d
 |-  ( ph -> ( ( ( abs ` ( A x. C ) ) ^ 2 ) + ( ( abs ` ( A x. D ) ) ^ 2 ) ) = ( ( A x. ( * ` A ) ) x. ( ( C x. ( * ` C ) ) + ( D x. ( * ` D ) ) ) ) )
171 144 oveq2d
 |-  ( ph -> ( ( B x. C ) x. ( * ` ( B x. C ) ) ) = ( ( B x. C ) x. ( ( * ` B ) x. ( * ` C ) ) ) )
172 22 15 33 36 mul4d
 |-  ( ph -> ( ( B x. C ) x. ( ( * ` B ) x. ( * ` C ) ) ) = ( ( B x. ( * ` B ) ) x. ( C x. ( * ` C ) ) ) )
173 48 171 172 3eqtrd
 |-  ( ph -> ( ( abs ` ( B x. C ) ) ^ 2 ) = ( ( B x. ( * ` B ) ) x. ( C x. ( * ` C ) ) ) )
174 91 oveq2d
 |-  ( ph -> ( ( B x. D ) x. ( * ` ( B x. D ) ) ) = ( ( B x. D ) x. ( ( * ` B ) x. ( * ` D ) ) ) )
175 22 24 33 38 mul4d
 |-  ( ph -> ( ( B x. D ) x. ( ( * ` B ) x. ( * ` D ) ) ) = ( ( B x. ( * ` B ) ) x. ( D x. ( * ` D ) ) ) )
176 26 174 175 3eqtrd
 |-  ( ph -> ( ( abs ` ( B x. D ) ) ^ 2 ) = ( ( B x. ( * ` B ) ) x. ( D x. ( * ` D ) ) ) )
177 173 176 oveq12d
 |-  ( ph -> ( ( ( abs ` ( B x. C ) ) ^ 2 ) + ( ( abs ` ( B x. D ) ) ^ 2 ) ) = ( ( ( B x. ( * ` B ) ) x. ( C x. ( * ` C ) ) ) + ( ( B x. ( * ` B ) ) x. ( D x. ( * ` D ) ) ) ) )
178 157 158 159 adddid
 |-  ( ph -> ( ( B x. ( * ` B ) ) x. ( ( C x. ( * ` C ) ) + ( D x. ( * ` D ) ) ) ) = ( ( ( B x. ( * ` B ) ) x. ( C x. ( * ` C ) ) ) + ( ( B x. ( * ` B ) ) x. ( D x. ( * ` D ) ) ) ) )
179 177 178 eqtr4d
 |-  ( ph -> ( ( ( abs ` ( B x. C ) ) ^ 2 ) + ( ( abs ` ( B x. D ) ) ^ 2 ) ) = ( ( B x. ( * ` B ) ) x. ( ( C x. ( * ` C ) ) + ( D x. ( * ` D ) ) ) ) )
180 170 179 oveq12d
 |-  ( ph -> ( ( ( ( abs ` ( A x. C ) ) ^ 2 ) + ( ( abs ` ( A x. D ) ) ^ 2 ) ) + ( ( ( abs ` ( B x. C ) ) ^ 2 ) + ( ( abs ` ( B x. D ) ) ^ 2 ) ) ) = ( ( ( A x. ( * ` A ) ) x. ( ( C x. ( * ` C ) ) + ( D x. ( * ` D ) ) ) ) + ( ( B x. ( * ` B ) ) x. ( ( C x. ( * ` C ) ) + ( D x. ( * ` D ) ) ) ) ) )
181 161 180 eqtr4d
 |-  ( ph -> ( ( ( A x. ( * ` A ) ) + ( B x. ( * ` B ) ) ) x. ( ( C x. ( * ` C ) ) + ( D x. ( * ` D ) ) ) ) = ( ( ( ( abs ` ( A x. C ) ) ^ 2 ) + ( ( abs ` ( A x. D ) ) ^ 2 ) ) + ( ( ( abs ` ( B x. C ) ) ^ 2 ) + ( ( abs ` ( B x. D ) ) ^ 2 ) ) ) )
182 13 absvalsqd
 |-  ( ph -> ( ( abs ` A ) ^ 2 ) = ( A x. ( * ` A ) ) )
183 22 absvalsqd
 |-  ( ph -> ( ( abs ` B ) ^ 2 ) = ( B x. ( * ` B ) ) )
184 182 183 oveq12d
 |-  ( ph -> ( ( ( abs ` A ) ^ 2 ) + ( ( abs ` B ) ^ 2 ) ) = ( ( A x. ( * ` A ) ) + ( B x. ( * ` B ) ) ) )
185 6 184 syl5eq
 |-  ( ph -> X = ( ( A x. ( * ` A ) ) + ( B x. ( * ` B ) ) ) )
186 15 absvalsqd
 |-  ( ph -> ( ( abs ` C ) ^ 2 ) = ( C x. ( * ` C ) ) )
187 24 absvalsqd
 |-  ( ph -> ( ( abs ` D ) ^ 2 ) = ( D x. ( * ` D ) ) )
188 186 187 oveq12d
 |-  ( ph -> ( ( ( abs ` C ) ^ 2 ) + ( ( abs ` D ) ^ 2 ) ) = ( ( C x. ( * ` C ) ) + ( D x. ( * ` D ) ) ) )
189 7 188 syl5eq
 |-  ( ph -> Y = ( ( C x. ( * ` C ) ) + ( D x. ( * ` D ) ) ) )
190 185 189 oveq12d
 |-  ( ph -> ( X x. Y ) = ( ( ( A x. ( * ` A ) ) + ( B x. ( * ` B ) ) ) x. ( ( C x. ( * ` C ) ) + ( D x. ( * ` D ) ) ) ) )
191 20 29 46 51 add42d
 |-  ( ph -> ( ( ( ( abs ` ( A x. C ) ) ^ 2 ) + ( ( abs ` ( B x. D ) ) ^ 2 ) ) + ( ( ( abs ` ( A x. D ) ) ^ 2 ) + ( ( abs ` ( B x. C ) ) ^ 2 ) ) ) = ( ( ( ( abs ` ( A x. C ) ) ^ 2 ) + ( ( abs ` ( A x. D ) ) ^ 2 ) ) + ( ( ( abs ` ( B x. C ) ) ^ 2 ) + ( ( abs ` ( B x. D ) ) ^ 2 ) ) ) )
192 181 190 191 3eqtr4d
 |-  ( ph -> ( X x. Y ) = ( ( ( ( abs ` ( A x. C ) ) ^ 2 ) + ( ( abs ` ( B x. D ) ) ^ 2 ) ) + ( ( ( abs ` ( A x. D ) ) ^ 2 ) + ( ( abs ` ( B x. C ) ) ^ 2 ) ) ) )
193 53 155 192 3eqtr4d
 |-  ( ph -> ( ( ( abs ` ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) ) ^ 2 ) + ( ( abs ` ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) ) ^ 2 ) ) = ( X x. Y ) )
194 193 oveq1d
 |-  ( ph -> ( ( ( ( abs ` ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) ) ^ 2 ) + ( ( abs ` ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) ) ^ 2 ) ) / ( M ^ 2 ) ) = ( ( X x. Y ) / ( M ^ 2 ) ) )
195 8 nncnd
 |-  ( ph -> M e. CC )
196 8 nnne0d
 |-  ( ph -> M =/= 0 )
197 55 195 196 absdivd
 |-  ( ph -> ( abs ` ( ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) / M ) ) = ( ( abs ` ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) ) / ( abs ` M ) ) )
198 8 nnred
 |-  ( ph -> M e. RR )
199 8 nnnn0d
 |-  ( ph -> M e. NN0 )
200 199 nn0ge0d
 |-  ( ph -> 0 <_ M )
201 198 200 absidd
 |-  ( ph -> ( abs ` M ) = M )
202 201 oveq2d
 |-  ( ph -> ( ( abs ` ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) ) / ( abs ` M ) ) = ( ( abs ` ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) ) / M ) )
203 197 202 eqtrd
 |-  ( ph -> ( abs ` ( ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) / M ) ) = ( ( abs ` ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) ) / M ) )
204 203 oveq1d
 |-  ( ph -> ( ( abs ` ( ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) / M ) ) ^ 2 ) = ( ( ( abs ` ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) ) / M ) ^ 2 ) )
205 55 abscld
 |-  ( ph -> ( abs ` ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) ) e. RR )
206 205 recnd
 |-  ( ph -> ( abs ` ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) ) e. CC )
207 206 195 196 sqdivd
 |-  ( ph -> ( ( ( abs ` ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) ) / M ) ^ 2 ) = ( ( ( abs ` ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) ) ^ 2 ) / ( M ^ 2 ) ) )
208 204 207 eqtrd
 |-  ( ph -> ( ( abs ` ( ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) / M ) ) ^ 2 ) = ( ( ( abs ` ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) ) ^ 2 ) / ( M ^ 2 ) ) )
209 106 195 196 absdivd
 |-  ( ph -> ( abs ` ( ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) / M ) ) = ( ( abs ` ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) ) / ( abs ` M ) ) )
210 201 oveq2d
 |-  ( ph -> ( ( abs ` ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) ) / ( abs ` M ) ) = ( ( abs ` ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) ) / M ) )
211 209 210 eqtrd
 |-  ( ph -> ( abs ` ( ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) / M ) ) = ( ( abs ` ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) ) / M ) )
212 211 oveq1d
 |-  ( ph -> ( ( abs ` ( ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) / M ) ) ^ 2 ) = ( ( ( abs ` ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) ) / M ) ^ 2 ) )
213 106 abscld
 |-  ( ph -> ( abs ` ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) ) e. RR )
214 213 recnd
 |-  ( ph -> ( abs ` ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) ) e. CC )
215 214 195 196 sqdivd
 |-  ( ph -> ( ( ( abs ` ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) ) / M ) ^ 2 ) = ( ( ( abs ` ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) ) ^ 2 ) / ( M ^ 2 ) ) )
216 212 215 eqtrd
 |-  ( ph -> ( ( abs ` ( ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) / M ) ) ^ 2 ) = ( ( ( abs ` ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) ) ^ 2 ) / ( M ^ 2 ) ) )
217 208 216 oveq12d
 |-  ( ph -> ( ( ( abs ` ( ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) / M ) ) ^ 2 ) + ( ( abs ` ( ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) / M ) ) ^ 2 ) ) = ( ( ( ( abs ` ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) ) ^ 2 ) / ( M ^ 2 ) ) + ( ( ( abs ` ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) ) ^ 2 ) / ( M ^ 2 ) ) ) )
218 30 41 addcld
 |-  ( ph -> ( ( ( ( abs ` ( A x. C ) ) ^ 2 ) + ( ( abs ` ( B x. D ) ) ^ 2 ) ) + ( ( ( ( * ` A ) x. C ) x. ( ( * ` B ) x. D ) ) + ( ( B x. ( * ` C ) ) x. ( A x. ( * ` D ) ) ) ) ) e. CC )
219 104 218 eqeltrd
 |-  ( ph -> ( ( abs ` ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) ) ^ 2 ) e. CC )
220 52 41 subcld
 |-  ( ph -> ( ( ( ( abs ` ( A x. D ) ) ^ 2 ) + ( ( abs ` ( B x. C ) ) ^ 2 ) ) - ( ( ( ( * ` A ) x. C ) x. ( ( * ` B ) x. D ) ) + ( ( B x. ( * ` C ) ) x. ( A x. ( * ` D ) ) ) ) ) e. CC )
221 154 220 eqeltrd
 |-  ( ph -> ( ( abs ` ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) ) ^ 2 ) e. CC )
222 8 nnsqcld
 |-  ( ph -> ( M ^ 2 ) e. NN )
223 222 nncnd
 |-  ( ph -> ( M ^ 2 ) e. CC )
224 222 nnne0d
 |-  ( ph -> ( M ^ 2 ) =/= 0 )
225 219 221 223 224 divdird
 |-  ( ph -> ( ( ( ( abs ` ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) ) ^ 2 ) + ( ( abs ` ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) ) ^ 2 ) ) / ( M ^ 2 ) ) = ( ( ( ( abs ` ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) ) ^ 2 ) / ( M ^ 2 ) ) + ( ( ( abs ` ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) ) ^ 2 ) / ( M ^ 2 ) ) ) )
226 217 225 eqtr4d
 |-  ( ph -> ( ( ( abs ` ( ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) / M ) ) ^ 2 ) + ( ( abs ` ( ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) / M ) ) ^ 2 ) ) = ( ( ( ( abs ` ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) ) ^ 2 ) + ( ( abs ` ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) ) ^ 2 ) ) / ( M ^ 2 ) ) )
227 182 156 eqeltrd
 |-  ( ph -> ( ( abs ` A ) ^ 2 ) e. CC )
228 183 157 eqeltrd
 |-  ( ph -> ( ( abs ` B ) ^ 2 ) e. CC )
229 227 228 addcld
 |-  ( ph -> ( ( ( abs ` A ) ^ 2 ) + ( ( abs ` B ) ^ 2 ) ) e. CC )
230 6 229 eqeltrid
 |-  ( ph -> X e. CC )
231 189 160 eqeltrd
 |-  ( ph -> Y e. CC )
232 230 195 231 195 196 196 divmuldivd
 |-  ( ph -> ( ( X / M ) x. ( Y / M ) ) = ( ( X x. Y ) / ( M x. M ) ) )
233 195 sqvald
 |-  ( ph -> ( M ^ 2 ) = ( M x. M ) )
234 233 oveq2d
 |-  ( ph -> ( ( X x. Y ) / ( M ^ 2 ) ) = ( ( X x. Y ) / ( M x. M ) ) )
235 232 234 eqtr4d
 |-  ( ph -> ( ( X / M ) x. ( Y / M ) ) = ( ( X x. Y ) / ( M ^ 2 ) ) )
236 194 226 235 3eqtr4d
 |-  ( ph -> ( ( ( abs ` ( ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) / M ) ) ^ 2 ) + ( ( abs ` ( ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) / M ) ) ^ 2 ) ) = ( ( X / M ) x. ( Y / M ) ) )
237 230 55 nncand
 |-  ( ph -> ( X - ( X - ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) ) ) = ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) )
238 156 157 32 54 addsub4d
 |-  ( ph -> ( ( ( A x. ( * ` A ) ) + ( B x. ( * ` B ) ) ) - ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) ) = ( ( ( A x. ( * ` A ) ) - ( ( * ` A ) x. C ) ) + ( ( B x. ( * ` B ) ) - ( B x. ( * ` D ) ) ) ) )
239 185 oveq1d
 |-  ( ph -> ( X - ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) ) = ( ( ( A x. ( * ` A ) ) + ( B x. ( * ` B ) ) ) - ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) ) )
240 31 13 15 subdid
 |-  ( ph -> ( ( * ` A ) x. ( A - C ) ) = ( ( ( * ` A ) x. A ) - ( ( * ` A ) x. C ) ) )
241 31 13 mulcomd
 |-  ( ph -> ( ( * ` A ) x. A ) = ( A x. ( * ` A ) ) )
242 241 oveq1d
 |-  ( ph -> ( ( ( * ` A ) x. A ) - ( ( * ` A ) x. C ) ) = ( ( A x. ( * ` A ) ) - ( ( * ` A ) x. C ) ) )
243 240 242 eqtrd
 |-  ( ph -> ( ( * ` A ) x. ( A - C ) ) = ( ( A x. ( * ` A ) ) - ( ( * ` A ) x. C ) ) )
244 cjsub
 |-  ( ( B e. CC /\ D e. CC ) -> ( * ` ( B - D ) ) = ( ( * ` B ) - ( * ` D ) ) )
245 22 24 244 syl2anc
 |-  ( ph -> ( * ` ( B - D ) ) = ( ( * ` B ) - ( * ` D ) ) )
246 245 oveq2d
 |-  ( ph -> ( B x. ( * ` ( B - D ) ) ) = ( B x. ( ( * ` B ) - ( * ` D ) ) ) )
247 22 33 38 subdid
 |-  ( ph -> ( B x. ( ( * ` B ) - ( * ` D ) ) ) = ( ( B x. ( * ` B ) ) - ( B x. ( * ` D ) ) ) )
248 246 247 eqtrd
 |-  ( ph -> ( B x. ( * ` ( B - D ) ) ) = ( ( B x. ( * ` B ) ) - ( B x. ( * ` D ) ) ) )
249 243 248 oveq12d
 |-  ( ph -> ( ( ( * ` A ) x. ( A - C ) ) + ( B x. ( * ` ( B - D ) ) ) ) = ( ( ( A x. ( * ` A ) ) - ( ( * ` A ) x. C ) ) + ( ( B x. ( * ` B ) ) - ( B x. ( * ` D ) ) ) ) )
250 238 239 249 3eqtr4d
 |-  ( ph -> ( X - ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) ) = ( ( ( * ` A ) x. ( A - C ) ) + ( B x. ( * ` ( B - D ) ) ) ) )
251 250 oveq2d
 |-  ( ph -> ( X - ( X - ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) ) ) = ( X - ( ( ( * ` A ) x. ( A - C ) ) + ( B x. ( * ` ( B - D ) ) ) ) ) )
252 237 251 eqtr3d
 |-  ( ph -> ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) = ( X - ( ( ( * ` A ) x. ( A - C ) ) + ( B x. ( * ` ( B - D ) ) ) ) ) )
253 252 oveq1d
 |-  ( ph -> ( ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) / M ) = ( ( X - ( ( ( * ` A ) x. ( A - C ) ) + ( B x. ( * ` ( B - D ) ) ) ) ) / M ) )
254 13 15 subcld
 |-  ( ph -> ( A - C ) e. CC )
255 31 254 mulcld
 |-  ( ph -> ( ( * ` A ) x. ( A - C ) ) e. CC )
256 22 24 subcld
 |-  ( ph -> ( B - D ) e. CC )
257 256 cjcld
 |-  ( ph -> ( * ` ( B - D ) ) e. CC )
258 22 257 mulcld
 |-  ( ph -> ( B x. ( * ` ( B - D ) ) ) e. CC )
259 255 258 addcld
 |-  ( ph -> ( ( ( * ` A ) x. ( A - C ) ) + ( B x. ( * ` ( B - D ) ) ) ) e. CC )
260 230 259 195 196 divsubdird
 |-  ( ph -> ( ( X - ( ( ( * ` A ) x. ( A - C ) ) + ( B x. ( * ` ( B - D ) ) ) ) ) / M ) = ( ( X / M ) - ( ( ( ( * ` A ) x. ( A - C ) ) + ( B x. ( * ` ( B - D ) ) ) ) / M ) ) )
261 255 258 195 196 divdird
 |-  ( ph -> ( ( ( ( * ` A ) x. ( A - C ) ) + ( B x. ( * ` ( B - D ) ) ) ) / M ) = ( ( ( ( * ` A ) x. ( A - C ) ) / M ) + ( ( B x. ( * ` ( B - D ) ) ) / M ) ) )
262 31 254 195 196 divassd
 |-  ( ph -> ( ( ( * ` A ) x. ( A - C ) ) / M ) = ( ( * ` A ) x. ( ( A - C ) / M ) ) )
263 22 257 195 196 divassd
 |-  ( ph -> ( ( B x. ( * ` ( B - D ) ) ) / M ) = ( B x. ( ( * ` ( B - D ) ) / M ) ) )
264 256 195 196 cjdivd
 |-  ( ph -> ( * ` ( ( B - D ) / M ) ) = ( ( * ` ( B - D ) ) / ( * ` M ) ) )
265 198 cjred
 |-  ( ph -> ( * ` M ) = M )
266 265 oveq2d
 |-  ( ph -> ( ( * ` ( B - D ) ) / ( * ` M ) ) = ( ( * ` ( B - D ) ) / M ) )
267 264 266 eqtrd
 |-  ( ph -> ( * ` ( ( B - D ) / M ) ) = ( ( * ` ( B - D ) ) / M ) )
268 267 oveq2d
 |-  ( ph -> ( B x. ( * ` ( ( B - D ) / M ) ) ) = ( B x. ( ( * ` ( B - D ) ) / M ) ) )
269 263 268 eqtr4d
 |-  ( ph -> ( ( B x. ( * ` ( B - D ) ) ) / M ) = ( B x. ( * ` ( ( B - D ) / M ) ) ) )
270 262 269 oveq12d
 |-  ( ph -> ( ( ( ( * ` A ) x. ( A - C ) ) / M ) + ( ( B x. ( * ` ( B - D ) ) ) / M ) ) = ( ( ( * ` A ) x. ( ( A - C ) / M ) ) + ( B x. ( * ` ( ( B - D ) / M ) ) ) ) )
271 261 270 eqtrd
 |-  ( ph -> ( ( ( ( * ` A ) x. ( A - C ) ) + ( B x. ( * ` ( B - D ) ) ) ) / M ) = ( ( ( * ` A ) x. ( ( A - C ) / M ) ) + ( B x. ( * ` ( ( B - D ) / M ) ) ) ) )
272 271 oveq2d
 |-  ( ph -> ( ( X / M ) - ( ( ( ( * ` A ) x. ( A - C ) ) + ( B x. ( * ` ( B - D ) ) ) ) / M ) ) = ( ( X / M ) - ( ( ( * ` A ) x. ( ( A - C ) / M ) ) + ( B x. ( * ` ( ( B - D ) / M ) ) ) ) ) )
273 253 260 272 3eqtrd
 |-  ( ph -> ( ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) / M ) = ( ( X / M ) - ( ( ( * ` A ) x. ( ( A - C ) / M ) ) + ( B x. ( * ` ( ( B - D ) / M ) ) ) ) ) )
274 11 nn0zd
 |-  ( ph -> ( X / M ) e. ZZ )
275 zgz
 |-  ( ( X / M ) e. ZZ -> ( X / M ) e. Z[i] )
276 274 275 syl
 |-  ( ph -> ( X / M ) e. Z[i] )
277 gzcjcl
 |-  ( A e. Z[i] -> ( * ` A ) e. Z[i] )
278 2 277 syl
 |-  ( ph -> ( * ` A ) e. Z[i] )
279 gzmulcl
 |-  ( ( ( * ` A ) e. Z[i] /\ ( ( A - C ) / M ) e. Z[i] ) -> ( ( * ` A ) x. ( ( A - C ) / M ) ) e. Z[i] )
280 278 9 279 syl2anc
 |-  ( ph -> ( ( * ` A ) x. ( ( A - C ) / M ) ) e. Z[i] )
281 gzcjcl
 |-  ( ( ( B - D ) / M ) e. Z[i] -> ( * ` ( ( B - D ) / M ) ) e. Z[i] )
282 10 281 syl
 |-  ( ph -> ( * ` ( ( B - D ) / M ) ) e. Z[i] )
283 gzmulcl
 |-  ( ( B e. Z[i] /\ ( * ` ( ( B - D ) / M ) ) e. Z[i] ) -> ( B x. ( * ` ( ( B - D ) / M ) ) ) e. Z[i] )
284 3 282 283 syl2anc
 |-  ( ph -> ( B x. ( * ` ( ( B - D ) / M ) ) ) e. Z[i] )
285 gzaddcl
 |-  ( ( ( ( * ` A ) x. ( ( A - C ) / M ) ) e. Z[i] /\ ( B x. ( * ` ( ( B - D ) / M ) ) ) e. Z[i] ) -> ( ( ( * ` A ) x. ( ( A - C ) / M ) ) + ( B x. ( * ` ( ( B - D ) / M ) ) ) ) e. Z[i] )
286 280 284 285 syl2anc
 |-  ( ph -> ( ( ( * ` A ) x. ( ( A - C ) / M ) ) + ( B x. ( * ` ( ( B - D ) / M ) ) ) ) e. Z[i] )
287 gzsubcl
 |-  ( ( ( X / M ) e. Z[i] /\ ( ( ( * ` A ) x. ( ( A - C ) / M ) ) + ( B x. ( * ` ( ( B - D ) / M ) ) ) ) e. Z[i] ) -> ( ( X / M ) - ( ( ( * ` A ) x. ( ( A - C ) / M ) ) + ( B x. ( * ` ( ( B - D ) / M ) ) ) ) ) e. Z[i] )
288 276 286 287 syl2anc
 |-  ( ph -> ( ( X / M ) - ( ( ( * ` A ) x. ( ( A - C ) / M ) ) + ( B x. ( * ` ( ( B - D ) / M ) ) ) ) ) e. Z[i] )
289 273 288 eqeltrd
 |-  ( ph -> ( ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) / M ) e. Z[i] )
290 254 cjcld
 |-  ( ph -> ( * ` ( A - C ) ) e. CC )
291 22 290 mulcld
 |-  ( ph -> ( B x. ( * ` ( A - C ) ) ) e. CC )
292 31 256 mulcld
 |-  ( ph -> ( ( * ` A ) x. ( B - D ) ) e. CC )
293 291 292 195 196 divsubdird
 |-  ( ph -> ( ( ( B x. ( * ` ( A - C ) ) ) - ( ( * ` A ) x. ( B - D ) ) ) / M ) = ( ( ( B x. ( * ` ( A - C ) ) ) / M ) - ( ( ( * ` A ) x. ( B - D ) ) / M ) ) )
294 cjsub
 |-  ( ( A e. CC /\ C e. CC ) -> ( * ` ( A - C ) ) = ( ( * ` A ) - ( * ` C ) ) )
295 13 15 294 syl2anc
 |-  ( ph -> ( * ` ( A - C ) ) = ( ( * ` A ) - ( * ` C ) ) )
296 295 oveq2d
 |-  ( ph -> ( B x. ( * ` ( A - C ) ) ) = ( B x. ( ( * ` A ) - ( * ` C ) ) ) )
297 22 31 36 subdid
 |-  ( ph -> ( B x. ( ( * ` A ) - ( * ` C ) ) ) = ( ( B x. ( * ` A ) ) - ( B x. ( * ` C ) ) ) )
298 296 297 eqtrd
 |-  ( ph -> ( B x. ( * ` ( A - C ) ) ) = ( ( B x. ( * ` A ) ) - ( B x. ( * ` C ) ) ) )
299 31 22 24 subdid
 |-  ( ph -> ( ( * ` A ) x. ( B - D ) ) = ( ( ( * ` A ) x. B ) - ( ( * ` A ) x. D ) ) )
300 31 22 mulcomd
 |-  ( ph -> ( ( * ` A ) x. B ) = ( B x. ( * ` A ) ) )
301 300 oveq1d
 |-  ( ph -> ( ( ( * ` A ) x. B ) - ( ( * ` A ) x. D ) ) = ( ( B x. ( * ` A ) ) - ( ( * ` A ) x. D ) ) )
302 299 301 eqtrd
 |-  ( ph -> ( ( * ` A ) x. ( B - D ) ) = ( ( B x. ( * ` A ) ) - ( ( * ` A ) x. D ) ) )
303 298 302 oveq12d
 |-  ( ph -> ( ( B x. ( * ` ( A - C ) ) ) - ( ( * ` A ) x. ( B - D ) ) ) = ( ( ( B x. ( * ` A ) ) - ( B x. ( * ` C ) ) ) - ( ( B x. ( * ` A ) ) - ( ( * ` A ) x. D ) ) ) )
304 22 31 mulcld
 |-  ( ph -> ( B x. ( * ` A ) ) e. CC )
305 304 37 105 nnncan1d
 |-  ( ph -> ( ( ( B x. ( * ` A ) ) - ( B x. ( * ` C ) ) ) - ( ( B x. ( * ` A ) ) - ( ( * ` A ) x. D ) ) ) = ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) )
306 303 305 eqtrd
 |-  ( ph -> ( ( B x. ( * ` ( A - C ) ) ) - ( ( * ` A ) x. ( B - D ) ) ) = ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) )
307 306 oveq1d
 |-  ( ph -> ( ( ( B x. ( * ` ( A - C ) ) ) - ( ( * ` A ) x. ( B - D ) ) ) / M ) = ( ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) / M ) )
308 293 307 eqtr3d
 |-  ( ph -> ( ( ( B x. ( * ` ( A - C ) ) ) / M ) - ( ( ( * ` A ) x. ( B - D ) ) / M ) ) = ( ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) / M ) )
309 22 290 195 196 divassd
 |-  ( ph -> ( ( B x. ( * ` ( A - C ) ) ) / M ) = ( B x. ( ( * ` ( A - C ) ) / M ) ) )
310 254 195 196 cjdivd
 |-  ( ph -> ( * ` ( ( A - C ) / M ) ) = ( ( * ` ( A - C ) ) / ( * ` M ) ) )
311 265 oveq2d
 |-  ( ph -> ( ( * ` ( A - C ) ) / ( * ` M ) ) = ( ( * ` ( A - C ) ) / M ) )
312 310 311 eqtrd
 |-  ( ph -> ( * ` ( ( A - C ) / M ) ) = ( ( * ` ( A - C ) ) / M ) )
313 312 oveq2d
 |-  ( ph -> ( B x. ( * ` ( ( A - C ) / M ) ) ) = ( B x. ( ( * ` ( A - C ) ) / M ) ) )
314 309 313 eqtr4d
 |-  ( ph -> ( ( B x. ( * ` ( A - C ) ) ) / M ) = ( B x. ( * ` ( ( A - C ) / M ) ) ) )
315 31 256 195 196 divassd
 |-  ( ph -> ( ( ( * ` A ) x. ( B - D ) ) / M ) = ( ( * ` A ) x. ( ( B - D ) / M ) ) )
316 314 315 oveq12d
 |-  ( ph -> ( ( ( B x. ( * ` ( A - C ) ) ) / M ) - ( ( ( * ` A ) x. ( B - D ) ) / M ) ) = ( ( B x. ( * ` ( ( A - C ) / M ) ) ) - ( ( * ` A ) x. ( ( B - D ) / M ) ) ) )
317 308 316 eqtr3d
 |-  ( ph -> ( ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) / M ) = ( ( B x. ( * ` ( ( A - C ) / M ) ) ) - ( ( * ` A ) x. ( ( B - D ) / M ) ) ) )
318 gzcjcl
 |-  ( ( ( A - C ) / M ) e. Z[i] -> ( * ` ( ( A - C ) / M ) ) e. Z[i] )
319 9 318 syl
 |-  ( ph -> ( * ` ( ( A - C ) / M ) ) e. Z[i] )
320 gzmulcl
 |-  ( ( B e. Z[i] /\ ( * ` ( ( A - C ) / M ) ) e. Z[i] ) -> ( B x. ( * ` ( ( A - C ) / M ) ) ) e. Z[i] )
321 3 319 320 syl2anc
 |-  ( ph -> ( B x. ( * ` ( ( A - C ) / M ) ) ) e. Z[i] )
322 gzmulcl
 |-  ( ( ( * ` A ) e. Z[i] /\ ( ( B - D ) / M ) e. Z[i] ) -> ( ( * ` A ) x. ( ( B - D ) / M ) ) e. Z[i] )
323 278 10 322 syl2anc
 |-  ( ph -> ( ( * ` A ) x. ( ( B - D ) / M ) ) e. Z[i] )
324 gzsubcl
 |-  ( ( ( B x. ( * ` ( ( A - C ) / M ) ) ) e. Z[i] /\ ( ( * ` A ) x. ( ( B - D ) / M ) ) e. Z[i] ) -> ( ( B x. ( * ` ( ( A - C ) / M ) ) ) - ( ( * ` A ) x. ( ( B - D ) / M ) ) ) e. Z[i] )
325 321 323 324 syl2anc
 |-  ( ph -> ( ( B x. ( * ` ( ( A - C ) / M ) ) ) - ( ( * ` A ) x. ( ( B - D ) / M ) ) ) e. Z[i] )
326 317 325 eqeltrd
 |-  ( ph -> ( ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) / M ) e. Z[i] )
327 1 4sqlem4a
 |-  ( ( ( ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) / M ) e. Z[i] /\ ( ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) / M ) e. Z[i] ) -> ( ( ( abs ` ( ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) / M ) ) ^ 2 ) + ( ( abs ` ( ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) / M ) ) ^ 2 ) ) e. S )
328 289 326 327 syl2anc
 |-  ( ph -> ( ( ( abs ` ( ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) / M ) ) ^ 2 ) + ( ( abs ` ( ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) / M ) ) ^ 2 ) ) e. S )
329 236 328 eqeltrrd
 |-  ( ph -> ( ( X / M ) x. ( Y / M ) ) e. S )