| Step |
Hyp |
Ref |
Expression |
| 1 |
|
4sq.1 |
⊢ 𝑆 = { 𝑛 ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℤ 𝑛 = ( ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) } |
| 2 |
|
mul4sq.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℤ[i] ) |
| 3 |
|
mul4sq.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℤ[i] ) |
| 4 |
|
mul4sq.3 |
⊢ ( 𝜑 → 𝐶 ∈ ℤ[i] ) |
| 5 |
|
mul4sq.4 |
⊢ ( 𝜑 → 𝐷 ∈ ℤ[i] ) |
| 6 |
|
mul4sq.5 |
⊢ 𝑋 = ( ( ( abs ‘ 𝐴 ) ↑ 2 ) + ( ( abs ‘ 𝐵 ) ↑ 2 ) ) |
| 7 |
|
mul4sq.6 |
⊢ 𝑌 = ( ( ( abs ‘ 𝐶 ) ↑ 2 ) + ( ( abs ‘ 𝐷 ) ↑ 2 ) ) |
| 8 |
|
mul4sq.7 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 9 |
|
mul4sq.8 |
⊢ ( 𝜑 → ( ( 𝐴 − 𝐶 ) / 𝑀 ) ∈ ℤ[i] ) |
| 10 |
|
mul4sq.9 |
⊢ ( 𝜑 → ( ( 𝐵 − 𝐷 ) / 𝑀 ) ∈ ℤ[i] ) |
| 11 |
|
mul4sq.10 |
⊢ ( 𝜑 → ( 𝑋 / 𝑀 ) ∈ ℕ0 ) |
| 12 |
|
gzcn |
⊢ ( 𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ ) |
| 13 |
2 12
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 14 |
|
gzcn |
⊢ ( 𝐶 ∈ ℤ[i] → 𝐶 ∈ ℂ ) |
| 15 |
4 14
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 16 |
13 15
|
mulcld |
⊢ ( 𝜑 → ( 𝐴 · 𝐶 ) ∈ ℂ ) |
| 17 |
16
|
absvalsqd |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐴 · 𝐶 ) ) ↑ 2 ) = ( ( 𝐴 · 𝐶 ) · ( ∗ ‘ ( 𝐴 · 𝐶 ) ) ) ) |
| 18 |
16
|
cjcld |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝐴 · 𝐶 ) ) ∈ ℂ ) |
| 19 |
16 18
|
mulcld |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐶 ) · ( ∗ ‘ ( 𝐴 · 𝐶 ) ) ) ∈ ℂ ) |
| 20 |
17 19
|
eqeltrd |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐴 · 𝐶 ) ) ↑ 2 ) ∈ ℂ ) |
| 21 |
|
gzcn |
⊢ ( 𝐵 ∈ ℤ[i] → 𝐵 ∈ ℂ ) |
| 22 |
3 21
|
syl |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 23 |
|
gzcn |
⊢ ( 𝐷 ∈ ℤ[i] → 𝐷 ∈ ℂ ) |
| 24 |
5 23
|
syl |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
| 25 |
22 24
|
mulcld |
⊢ ( 𝜑 → ( 𝐵 · 𝐷 ) ∈ ℂ ) |
| 26 |
25
|
absvalsqd |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐵 · 𝐷 ) ) ↑ 2 ) = ( ( 𝐵 · 𝐷 ) · ( ∗ ‘ ( 𝐵 · 𝐷 ) ) ) ) |
| 27 |
25
|
cjcld |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝐵 · 𝐷 ) ) ∈ ℂ ) |
| 28 |
25 27
|
mulcld |
⊢ ( 𝜑 → ( ( 𝐵 · 𝐷 ) · ( ∗ ‘ ( 𝐵 · 𝐷 ) ) ) ∈ ℂ ) |
| 29 |
26 28
|
eqeltrd |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐵 · 𝐷 ) ) ↑ 2 ) ∈ ℂ ) |
| 30 |
20 29
|
addcld |
⊢ ( 𝜑 → ( ( ( abs ‘ ( 𝐴 · 𝐶 ) ) ↑ 2 ) + ( ( abs ‘ ( 𝐵 · 𝐷 ) ) ↑ 2 ) ) ∈ ℂ ) |
| 31 |
13
|
cjcld |
⊢ ( 𝜑 → ( ∗ ‘ 𝐴 ) ∈ ℂ ) |
| 32 |
31 15
|
mulcld |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐴 ) · 𝐶 ) ∈ ℂ ) |
| 33 |
22
|
cjcld |
⊢ ( 𝜑 → ( ∗ ‘ 𝐵 ) ∈ ℂ ) |
| 34 |
33 24
|
mulcld |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐵 ) · 𝐷 ) ∈ ℂ ) |
| 35 |
32 34
|
mulcld |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) · ( ( ∗ ‘ 𝐵 ) · 𝐷 ) ) ∈ ℂ ) |
| 36 |
15
|
cjcld |
⊢ ( 𝜑 → ( ∗ ‘ 𝐶 ) ∈ ℂ ) |
| 37 |
22 36
|
mulcld |
⊢ ( 𝜑 → ( 𝐵 · ( ∗ ‘ 𝐶 ) ) ∈ ℂ ) |
| 38 |
24
|
cjcld |
⊢ ( 𝜑 → ( ∗ ‘ 𝐷 ) ∈ ℂ ) |
| 39 |
13 38
|
mulcld |
⊢ ( 𝜑 → ( 𝐴 · ( ∗ ‘ 𝐷 ) ) ∈ ℂ ) |
| 40 |
37 39
|
mulcld |
⊢ ( 𝜑 → ( ( 𝐵 · ( ∗ ‘ 𝐶 ) ) · ( 𝐴 · ( ∗ ‘ 𝐷 ) ) ) ∈ ℂ ) |
| 41 |
35 40
|
addcld |
⊢ ( 𝜑 → ( ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) · ( ( ∗ ‘ 𝐵 ) · 𝐷 ) ) + ( ( 𝐵 · ( ∗ ‘ 𝐶 ) ) · ( 𝐴 · ( ∗ ‘ 𝐷 ) ) ) ) ∈ ℂ ) |
| 42 |
13 24
|
mulcld |
⊢ ( 𝜑 → ( 𝐴 · 𝐷 ) ∈ ℂ ) |
| 43 |
42
|
absvalsqd |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐴 · 𝐷 ) ) ↑ 2 ) = ( ( 𝐴 · 𝐷 ) · ( ∗ ‘ ( 𝐴 · 𝐷 ) ) ) ) |
| 44 |
42
|
cjcld |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝐴 · 𝐷 ) ) ∈ ℂ ) |
| 45 |
42 44
|
mulcld |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐷 ) · ( ∗ ‘ ( 𝐴 · 𝐷 ) ) ) ∈ ℂ ) |
| 46 |
43 45
|
eqeltrd |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐴 · 𝐷 ) ) ↑ 2 ) ∈ ℂ ) |
| 47 |
22 15
|
mulcld |
⊢ ( 𝜑 → ( 𝐵 · 𝐶 ) ∈ ℂ ) |
| 48 |
47
|
absvalsqd |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐵 · 𝐶 ) ) ↑ 2 ) = ( ( 𝐵 · 𝐶 ) · ( ∗ ‘ ( 𝐵 · 𝐶 ) ) ) ) |
| 49 |
47
|
cjcld |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝐵 · 𝐶 ) ) ∈ ℂ ) |
| 50 |
47 49
|
mulcld |
⊢ ( 𝜑 → ( ( 𝐵 · 𝐶 ) · ( ∗ ‘ ( 𝐵 · 𝐶 ) ) ) ∈ ℂ ) |
| 51 |
48 50
|
eqeltrd |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐵 · 𝐶 ) ) ↑ 2 ) ∈ ℂ ) |
| 52 |
46 51
|
addcld |
⊢ ( 𝜑 → ( ( ( abs ‘ ( 𝐴 · 𝐷 ) ) ↑ 2 ) + ( ( abs ‘ ( 𝐵 · 𝐶 ) ) ↑ 2 ) ) ∈ ℂ ) |
| 53 |
30 41 52
|
ppncand |
⊢ ( 𝜑 → ( ( ( ( ( abs ‘ ( 𝐴 · 𝐶 ) ) ↑ 2 ) + ( ( abs ‘ ( 𝐵 · 𝐷 ) ) ↑ 2 ) ) + ( ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) · ( ( ∗ ‘ 𝐵 ) · 𝐷 ) ) + ( ( 𝐵 · ( ∗ ‘ 𝐶 ) ) · ( 𝐴 · ( ∗ ‘ 𝐷 ) ) ) ) ) + ( ( ( ( abs ‘ ( 𝐴 · 𝐷 ) ) ↑ 2 ) + ( ( abs ‘ ( 𝐵 · 𝐶 ) ) ↑ 2 ) ) − ( ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) · ( ( ∗ ‘ 𝐵 ) · 𝐷 ) ) + ( ( 𝐵 · ( ∗ ‘ 𝐶 ) ) · ( 𝐴 · ( ∗ ‘ 𝐷 ) ) ) ) ) ) = ( ( ( ( abs ‘ ( 𝐴 · 𝐶 ) ) ↑ 2 ) + ( ( abs ‘ ( 𝐵 · 𝐷 ) ) ↑ 2 ) ) + ( ( ( abs ‘ ( 𝐴 · 𝐷 ) ) ↑ 2 ) + ( ( abs ‘ ( 𝐵 · 𝐶 ) ) ↑ 2 ) ) ) ) |
| 54 |
22 38
|
mulcld |
⊢ ( 𝜑 → ( 𝐵 · ( ∗ ‘ 𝐷 ) ) ∈ ℂ ) |
| 55 |
32 54
|
addcld |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) + ( 𝐵 · ( ∗ ‘ 𝐷 ) ) ) ∈ ℂ ) |
| 56 |
55
|
absvalsqd |
⊢ ( 𝜑 → ( ( abs ‘ ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) + ( 𝐵 · ( ∗ ‘ 𝐷 ) ) ) ) ↑ 2 ) = ( ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) + ( 𝐵 · ( ∗ ‘ 𝐷 ) ) ) · ( ∗ ‘ ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) + ( 𝐵 · ( ∗ ‘ 𝐷 ) ) ) ) ) ) |
| 57 |
32 54
|
cjaddd |
⊢ ( 𝜑 → ( ∗ ‘ ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) + ( 𝐵 · ( ∗ ‘ 𝐷 ) ) ) ) = ( ( ∗ ‘ ( ( ∗ ‘ 𝐴 ) · 𝐶 ) ) + ( ∗ ‘ ( 𝐵 · ( ∗ ‘ 𝐷 ) ) ) ) ) |
| 58 |
31 15
|
cjmuld |
⊢ ( 𝜑 → ( ∗ ‘ ( ( ∗ ‘ 𝐴 ) · 𝐶 ) ) = ( ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) · ( ∗ ‘ 𝐶 ) ) ) |
| 59 |
13
|
cjcjd |
⊢ ( 𝜑 → ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) = 𝐴 ) |
| 60 |
59
|
oveq1d |
⊢ ( 𝜑 → ( ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) · ( ∗ ‘ 𝐶 ) ) = ( 𝐴 · ( ∗ ‘ 𝐶 ) ) ) |
| 61 |
58 60
|
eqtrd |
⊢ ( 𝜑 → ( ∗ ‘ ( ( ∗ ‘ 𝐴 ) · 𝐶 ) ) = ( 𝐴 · ( ∗ ‘ 𝐶 ) ) ) |
| 62 |
22 38
|
cjmuld |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝐵 · ( ∗ ‘ 𝐷 ) ) ) = ( ( ∗ ‘ 𝐵 ) · ( ∗ ‘ ( ∗ ‘ 𝐷 ) ) ) ) |
| 63 |
24
|
cjcjd |
⊢ ( 𝜑 → ( ∗ ‘ ( ∗ ‘ 𝐷 ) ) = 𝐷 ) |
| 64 |
63
|
oveq2d |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐵 ) · ( ∗ ‘ ( ∗ ‘ 𝐷 ) ) ) = ( ( ∗ ‘ 𝐵 ) · 𝐷 ) ) |
| 65 |
62 64
|
eqtrd |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝐵 · ( ∗ ‘ 𝐷 ) ) ) = ( ( ∗ ‘ 𝐵 ) · 𝐷 ) ) |
| 66 |
61 65
|
oveq12d |
⊢ ( 𝜑 → ( ( ∗ ‘ ( ( ∗ ‘ 𝐴 ) · 𝐶 ) ) + ( ∗ ‘ ( 𝐵 · ( ∗ ‘ 𝐷 ) ) ) ) = ( ( 𝐴 · ( ∗ ‘ 𝐶 ) ) + ( ( ∗ ‘ 𝐵 ) · 𝐷 ) ) ) |
| 67 |
57 66
|
eqtrd |
⊢ ( 𝜑 → ( ∗ ‘ ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) + ( 𝐵 · ( ∗ ‘ 𝐷 ) ) ) ) = ( ( 𝐴 · ( ∗ ‘ 𝐶 ) ) + ( ( ∗ ‘ 𝐵 ) · 𝐷 ) ) ) |
| 68 |
67
|
oveq2d |
⊢ ( 𝜑 → ( ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) + ( 𝐵 · ( ∗ ‘ 𝐷 ) ) ) · ( ∗ ‘ ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) + ( 𝐵 · ( ∗ ‘ 𝐷 ) ) ) ) ) = ( ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) + ( 𝐵 · ( ∗ ‘ 𝐷 ) ) ) · ( ( 𝐴 · ( ∗ ‘ 𝐶 ) ) + ( ( ∗ ‘ 𝐵 ) · 𝐷 ) ) ) ) |
| 69 |
13 36
|
mulcld |
⊢ ( 𝜑 → ( 𝐴 · ( ∗ ‘ 𝐶 ) ) ∈ ℂ ) |
| 70 |
32 69 34
|
adddid |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) · ( ( 𝐴 · ( ∗ ‘ 𝐶 ) ) + ( ( ∗ ‘ 𝐵 ) · 𝐷 ) ) ) = ( ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) · ( 𝐴 · ( ∗ ‘ 𝐶 ) ) ) + ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) · ( ( ∗ ‘ 𝐵 ) · 𝐷 ) ) ) ) |
| 71 |
15 31 13 36
|
mul4d |
⊢ ( 𝜑 → ( ( 𝐶 · ( ∗ ‘ 𝐴 ) ) · ( 𝐴 · ( ∗ ‘ 𝐶 ) ) ) = ( ( 𝐶 · 𝐴 ) · ( ( ∗ ‘ 𝐴 ) · ( ∗ ‘ 𝐶 ) ) ) ) |
| 72 |
31 15
|
mulcomd |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐴 ) · 𝐶 ) = ( 𝐶 · ( ∗ ‘ 𝐴 ) ) ) |
| 73 |
72
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) · ( 𝐴 · ( ∗ ‘ 𝐶 ) ) ) = ( ( 𝐶 · ( ∗ ‘ 𝐴 ) ) · ( 𝐴 · ( ∗ ‘ 𝐶 ) ) ) ) |
| 74 |
13 15
|
mulcomd |
⊢ ( 𝜑 → ( 𝐴 · 𝐶 ) = ( 𝐶 · 𝐴 ) ) |
| 75 |
13 15
|
cjmuld |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝐴 · 𝐶 ) ) = ( ( ∗ ‘ 𝐴 ) · ( ∗ ‘ 𝐶 ) ) ) |
| 76 |
74 75
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐶 ) · ( ∗ ‘ ( 𝐴 · 𝐶 ) ) ) = ( ( 𝐶 · 𝐴 ) · ( ( ∗ ‘ 𝐴 ) · ( ∗ ‘ 𝐶 ) ) ) ) |
| 77 |
71 73 76
|
3eqtr4d |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) · ( 𝐴 · ( ∗ ‘ 𝐶 ) ) ) = ( ( 𝐴 · 𝐶 ) · ( ∗ ‘ ( 𝐴 · 𝐶 ) ) ) ) |
| 78 |
77 17
|
eqtr4d |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) · ( 𝐴 · ( ∗ ‘ 𝐶 ) ) ) = ( ( abs ‘ ( 𝐴 · 𝐶 ) ) ↑ 2 ) ) |
| 79 |
78
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) · ( 𝐴 · ( ∗ ‘ 𝐶 ) ) ) + ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) · ( ( ∗ ‘ 𝐵 ) · 𝐷 ) ) ) = ( ( ( abs ‘ ( 𝐴 · 𝐶 ) ) ↑ 2 ) + ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) · ( ( ∗ ‘ 𝐵 ) · 𝐷 ) ) ) ) |
| 80 |
70 79
|
eqtrd |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) · ( ( 𝐴 · ( ∗ ‘ 𝐶 ) ) + ( ( ∗ ‘ 𝐵 ) · 𝐷 ) ) ) = ( ( ( abs ‘ ( 𝐴 · 𝐶 ) ) ↑ 2 ) + ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) · ( ( ∗ ‘ 𝐵 ) · 𝐷 ) ) ) ) |
| 81 |
54 69 34
|
adddid |
⊢ ( 𝜑 → ( ( 𝐵 · ( ∗ ‘ 𝐷 ) ) · ( ( 𝐴 · ( ∗ ‘ 𝐶 ) ) + ( ( ∗ ‘ 𝐵 ) · 𝐷 ) ) ) = ( ( ( 𝐵 · ( ∗ ‘ 𝐷 ) ) · ( 𝐴 · ( ∗ ‘ 𝐶 ) ) ) + ( ( 𝐵 · ( ∗ ‘ 𝐷 ) ) · ( ( ∗ ‘ 𝐵 ) · 𝐷 ) ) ) ) |
| 82 |
13 36
|
mulcomd |
⊢ ( 𝜑 → ( 𝐴 · ( ∗ ‘ 𝐶 ) ) = ( ( ∗ ‘ 𝐶 ) · 𝐴 ) ) |
| 83 |
82
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐵 · ( ∗ ‘ 𝐷 ) ) · ( 𝐴 · ( ∗ ‘ 𝐶 ) ) ) = ( ( 𝐵 · ( ∗ ‘ 𝐷 ) ) · ( ( ∗ ‘ 𝐶 ) · 𝐴 ) ) ) |
| 84 |
22 38 36 13
|
mul4d |
⊢ ( 𝜑 → ( ( 𝐵 · ( ∗ ‘ 𝐷 ) ) · ( ( ∗ ‘ 𝐶 ) · 𝐴 ) ) = ( ( 𝐵 · ( ∗ ‘ 𝐶 ) ) · ( ( ∗ ‘ 𝐷 ) · 𝐴 ) ) ) |
| 85 |
38 13
|
mulcomd |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐷 ) · 𝐴 ) = ( 𝐴 · ( ∗ ‘ 𝐷 ) ) ) |
| 86 |
85
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐵 · ( ∗ ‘ 𝐶 ) ) · ( ( ∗ ‘ 𝐷 ) · 𝐴 ) ) = ( ( 𝐵 · ( ∗ ‘ 𝐶 ) ) · ( 𝐴 · ( ∗ ‘ 𝐷 ) ) ) ) |
| 87 |
83 84 86
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝐵 · ( ∗ ‘ 𝐷 ) ) · ( 𝐴 · ( ∗ ‘ 𝐶 ) ) ) = ( ( 𝐵 · ( ∗ ‘ 𝐶 ) ) · ( 𝐴 · ( ∗ ‘ 𝐷 ) ) ) ) |
| 88 |
22 38 24 33
|
mul4d |
⊢ ( 𝜑 → ( ( 𝐵 · ( ∗ ‘ 𝐷 ) ) · ( 𝐷 · ( ∗ ‘ 𝐵 ) ) ) = ( ( 𝐵 · 𝐷 ) · ( ( ∗ ‘ 𝐷 ) · ( ∗ ‘ 𝐵 ) ) ) ) |
| 89 |
33 24
|
mulcomd |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐵 ) · 𝐷 ) = ( 𝐷 · ( ∗ ‘ 𝐵 ) ) ) |
| 90 |
89
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐵 · ( ∗ ‘ 𝐷 ) ) · ( ( ∗ ‘ 𝐵 ) · 𝐷 ) ) = ( ( 𝐵 · ( ∗ ‘ 𝐷 ) ) · ( 𝐷 · ( ∗ ‘ 𝐵 ) ) ) ) |
| 91 |
22 24
|
cjmuld |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝐵 · 𝐷 ) ) = ( ( ∗ ‘ 𝐵 ) · ( ∗ ‘ 𝐷 ) ) ) |
| 92 |
33 38
|
mulcomd |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐵 ) · ( ∗ ‘ 𝐷 ) ) = ( ( ∗ ‘ 𝐷 ) · ( ∗ ‘ 𝐵 ) ) ) |
| 93 |
91 92
|
eqtrd |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝐵 · 𝐷 ) ) = ( ( ∗ ‘ 𝐷 ) · ( ∗ ‘ 𝐵 ) ) ) |
| 94 |
93
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐵 · 𝐷 ) · ( ∗ ‘ ( 𝐵 · 𝐷 ) ) ) = ( ( 𝐵 · 𝐷 ) · ( ( ∗ ‘ 𝐷 ) · ( ∗ ‘ 𝐵 ) ) ) ) |
| 95 |
88 90 94
|
3eqtr4d |
⊢ ( 𝜑 → ( ( 𝐵 · ( ∗ ‘ 𝐷 ) ) · ( ( ∗ ‘ 𝐵 ) · 𝐷 ) ) = ( ( 𝐵 · 𝐷 ) · ( ∗ ‘ ( 𝐵 · 𝐷 ) ) ) ) |
| 96 |
95 26
|
eqtr4d |
⊢ ( 𝜑 → ( ( 𝐵 · ( ∗ ‘ 𝐷 ) ) · ( ( ∗ ‘ 𝐵 ) · 𝐷 ) ) = ( ( abs ‘ ( 𝐵 · 𝐷 ) ) ↑ 2 ) ) |
| 97 |
87 96
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝐵 · ( ∗ ‘ 𝐷 ) ) · ( 𝐴 · ( ∗ ‘ 𝐶 ) ) ) + ( ( 𝐵 · ( ∗ ‘ 𝐷 ) ) · ( ( ∗ ‘ 𝐵 ) · 𝐷 ) ) ) = ( ( ( 𝐵 · ( ∗ ‘ 𝐶 ) ) · ( 𝐴 · ( ∗ ‘ 𝐷 ) ) ) + ( ( abs ‘ ( 𝐵 · 𝐷 ) ) ↑ 2 ) ) ) |
| 98 |
81 97
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐵 · ( ∗ ‘ 𝐷 ) ) · ( ( 𝐴 · ( ∗ ‘ 𝐶 ) ) + ( ( ∗ ‘ 𝐵 ) · 𝐷 ) ) ) = ( ( ( 𝐵 · ( ∗ ‘ 𝐶 ) ) · ( 𝐴 · ( ∗ ‘ 𝐷 ) ) ) + ( ( abs ‘ ( 𝐵 · 𝐷 ) ) ↑ 2 ) ) ) |
| 99 |
80 98
|
oveq12d |
⊢ ( 𝜑 → ( ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) · ( ( 𝐴 · ( ∗ ‘ 𝐶 ) ) + ( ( ∗ ‘ 𝐵 ) · 𝐷 ) ) ) + ( ( 𝐵 · ( ∗ ‘ 𝐷 ) ) · ( ( 𝐴 · ( ∗ ‘ 𝐶 ) ) + ( ( ∗ ‘ 𝐵 ) · 𝐷 ) ) ) ) = ( ( ( ( abs ‘ ( 𝐴 · 𝐶 ) ) ↑ 2 ) + ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) · ( ( ∗ ‘ 𝐵 ) · 𝐷 ) ) ) + ( ( ( 𝐵 · ( ∗ ‘ 𝐶 ) ) · ( 𝐴 · ( ∗ ‘ 𝐷 ) ) ) + ( ( abs ‘ ( 𝐵 · 𝐷 ) ) ↑ 2 ) ) ) ) |
| 100 |
69 34
|
addcld |
⊢ ( 𝜑 → ( ( 𝐴 · ( ∗ ‘ 𝐶 ) ) + ( ( ∗ ‘ 𝐵 ) · 𝐷 ) ) ∈ ℂ ) |
| 101 |
32 54 100
|
adddird |
⊢ ( 𝜑 → ( ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) + ( 𝐵 · ( ∗ ‘ 𝐷 ) ) ) · ( ( 𝐴 · ( ∗ ‘ 𝐶 ) ) + ( ( ∗ ‘ 𝐵 ) · 𝐷 ) ) ) = ( ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) · ( ( 𝐴 · ( ∗ ‘ 𝐶 ) ) + ( ( ∗ ‘ 𝐵 ) · 𝐷 ) ) ) + ( ( 𝐵 · ( ∗ ‘ 𝐷 ) ) · ( ( 𝐴 · ( ∗ ‘ 𝐶 ) ) + ( ( ∗ ‘ 𝐵 ) · 𝐷 ) ) ) ) ) |
| 102 |
20 29 35 40
|
add42d |
⊢ ( 𝜑 → ( ( ( ( abs ‘ ( 𝐴 · 𝐶 ) ) ↑ 2 ) + ( ( abs ‘ ( 𝐵 · 𝐷 ) ) ↑ 2 ) ) + ( ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) · ( ( ∗ ‘ 𝐵 ) · 𝐷 ) ) + ( ( 𝐵 · ( ∗ ‘ 𝐶 ) ) · ( 𝐴 · ( ∗ ‘ 𝐷 ) ) ) ) ) = ( ( ( ( abs ‘ ( 𝐴 · 𝐶 ) ) ↑ 2 ) + ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) · ( ( ∗ ‘ 𝐵 ) · 𝐷 ) ) ) + ( ( ( 𝐵 · ( ∗ ‘ 𝐶 ) ) · ( 𝐴 · ( ∗ ‘ 𝐷 ) ) ) + ( ( abs ‘ ( 𝐵 · 𝐷 ) ) ↑ 2 ) ) ) ) |
| 103 |
99 101 102
|
3eqtr4d |
⊢ ( 𝜑 → ( ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) + ( 𝐵 · ( ∗ ‘ 𝐷 ) ) ) · ( ( 𝐴 · ( ∗ ‘ 𝐶 ) ) + ( ( ∗ ‘ 𝐵 ) · 𝐷 ) ) ) = ( ( ( ( abs ‘ ( 𝐴 · 𝐶 ) ) ↑ 2 ) + ( ( abs ‘ ( 𝐵 · 𝐷 ) ) ↑ 2 ) ) + ( ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) · ( ( ∗ ‘ 𝐵 ) · 𝐷 ) ) + ( ( 𝐵 · ( ∗ ‘ 𝐶 ) ) · ( 𝐴 · ( ∗ ‘ 𝐷 ) ) ) ) ) ) |
| 104 |
56 68 103
|
3eqtrd |
⊢ ( 𝜑 → ( ( abs ‘ ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) + ( 𝐵 · ( ∗ ‘ 𝐷 ) ) ) ) ↑ 2 ) = ( ( ( ( abs ‘ ( 𝐴 · 𝐶 ) ) ↑ 2 ) + ( ( abs ‘ ( 𝐵 · 𝐷 ) ) ↑ 2 ) ) + ( ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) · ( ( ∗ ‘ 𝐵 ) · 𝐷 ) ) + ( ( 𝐵 · ( ∗ ‘ 𝐶 ) ) · ( 𝐴 · ( ∗ ‘ 𝐷 ) ) ) ) ) ) |
| 105 |
31 24
|
mulcld |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐴 ) · 𝐷 ) ∈ ℂ ) |
| 106 |
105 37
|
subcld |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐴 ) · 𝐷 ) − ( 𝐵 · ( ∗ ‘ 𝐶 ) ) ) ∈ ℂ ) |
| 107 |
106
|
absvalsqd |
⊢ ( 𝜑 → ( ( abs ‘ ( ( ( ∗ ‘ 𝐴 ) · 𝐷 ) − ( 𝐵 · ( ∗ ‘ 𝐶 ) ) ) ) ↑ 2 ) = ( ( ( ( ∗ ‘ 𝐴 ) · 𝐷 ) − ( 𝐵 · ( ∗ ‘ 𝐶 ) ) ) · ( ∗ ‘ ( ( ( ∗ ‘ 𝐴 ) · 𝐷 ) − ( 𝐵 · ( ∗ ‘ 𝐶 ) ) ) ) ) ) |
| 108 |
|
cjsub |
⊢ ( ( ( ( ∗ ‘ 𝐴 ) · 𝐷 ) ∈ ℂ ∧ ( 𝐵 · ( ∗ ‘ 𝐶 ) ) ∈ ℂ ) → ( ∗ ‘ ( ( ( ∗ ‘ 𝐴 ) · 𝐷 ) − ( 𝐵 · ( ∗ ‘ 𝐶 ) ) ) ) = ( ( ∗ ‘ ( ( ∗ ‘ 𝐴 ) · 𝐷 ) ) − ( ∗ ‘ ( 𝐵 · ( ∗ ‘ 𝐶 ) ) ) ) ) |
| 109 |
105 37 108
|
syl2anc |
⊢ ( 𝜑 → ( ∗ ‘ ( ( ( ∗ ‘ 𝐴 ) · 𝐷 ) − ( 𝐵 · ( ∗ ‘ 𝐶 ) ) ) ) = ( ( ∗ ‘ ( ( ∗ ‘ 𝐴 ) · 𝐷 ) ) − ( ∗ ‘ ( 𝐵 · ( ∗ ‘ 𝐶 ) ) ) ) ) |
| 110 |
31 24
|
cjmuld |
⊢ ( 𝜑 → ( ∗ ‘ ( ( ∗ ‘ 𝐴 ) · 𝐷 ) ) = ( ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) · ( ∗ ‘ 𝐷 ) ) ) |
| 111 |
59
|
oveq1d |
⊢ ( 𝜑 → ( ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) · ( ∗ ‘ 𝐷 ) ) = ( 𝐴 · ( ∗ ‘ 𝐷 ) ) ) |
| 112 |
110 111
|
eqtrd |
⊢ ( 𝜑 → ( ∗ ‘ ( ( ∗ ‘ 𝐴 ) · 𝐷 ) ) = ( 𝐴 · ( ∗ ‘ 𝐷 ) ) ) |
| 113 |
22 36
|
cjmuld |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝐵 · ( ∗ ‘ 𝐶 ) ) ) = ( ( ∗ ‘ 𝐵 ) · ( ∗ ‘ ( ∗ ‘ 𝐶 ) ) ) ) |
| 114 |
15
|
cjcjd |
⊢ ( 𝜑 → ( ∗ ‘ ( ∗ ‘ 𝐶 ) ) = 𝐶 ) |
| 115 |
114
|
oveq2d |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐵 ) · ( ∗ ‘ ( ∗ ‘ 𝐶 ) ) ) = ( ( ∗ ‘ 𝐵 ) · 𝐶 ) ) |
| 116 |
113 115
|
eqtrd |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝐵 · ( ∗ ‘ 𝐶 ) ) ) = ( ( ∗ ‘ 𝐵 ) · 𝐶 ) ) |
| 117 |
112 116
|
oveq12d |
⊢ ( 𝜑 → ( ( ∗ ‘ ( ( ∗ ‘ 𝐴 ) · 𝐷 ) ) − ( ∗ ‘ ( 𝐵 · ( ∗ ‘ 𝐶 ) ) ) ) = ( ( 𝐴 · ( ∗ ‘ 𝐷 ) ) − ( ( ∗ ‘ 𝐵 ) · 𝐶 ) ) ) |
| 118 |
109 117
|
eqtrd |
⊢ ( 𝜑 → ( ∗ ‘ ( ( ( ∗ ‘ 𝐴 ) · 𝐷 ) − ( 𝐵 · ( ∗ ‘ 𝐶 ) ) ) ) = ( ( 𝐴 · ( ∗ ‘ 𝐷 ) ) − ( ( ∗ ‘ 𝐵 ) · 𝐶 ) ) ) |
| 119 |
118
|
oveq2d |
⊢ ( 𝜑 → ( ( ( ( ∗ ‘ 𝐴 ) · 𝐷 ) − ( 𝐵 · ( ∗ ‘ 𝐶 ) ) ) · ( ∗ ‘ ( ( ( ∗ ‘ 𝐴 ) · 𝐷 ) − ( 𝐵 · ( ∗ ‘ 𝐶 ) ) ) ) ) = ( ( ( ( ∗ ‘ 𝐴 ) · 𝐷 ) − ( 𝐵 · ( ∗ ‘ 𝐶 ) ) ) · ( ( 𝐴 · ( ∗ ‘ 𝐷 ) ) − ( ( ∗ ‘ 𝐵 ) · 𝐶 ) ) ) ) |
| 120 |
33 15
|
mulcld |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐵 ) · 𝐶 ) ∈ ℂ ) |
| 121 |
39 120
|
subcld |
⊢ ( 𝜑 → ( ( 𝐴 · ( ∗ ‘ 𝐷 ) ) − ( ( ∗ ‘ 𝐵 ) · 𝐶 ) ) ∈ ℂ ) |
| 122 |
105 37 121
|
subdird |
⊢ ( 𝜑 → ( ( ( ( ∗ ‘ 𝐴 ) · 𝐷 ) − ( 𝐵 · ( ∗ ‘ 𝐶 ) ) ) · ( ( 𝐴 · ( ∗ ‘ 𝐷 ) ) − ( ( ∗ ‘ 𝐵 ) · 𝐶 ) ) ) = ( ( ( ( ∗ ‘ 𝐴 ) · 𝐷 ) · ( ( 𝐴 · ( ∗ ‘ 𝐷 ) ) − ( ( ∗ ‘ 𝐵 ) · 𝐶 ) ) ) − ( ( 𝐵 · ( ∗ ‘ 𝐶 ) ) · ( ( 𝐴 · ( ∗ ‘ 𝐷 ) ) − ( ( ∗ ‘ 𝐵 ) · 𝐶 ) ) ) ) ) |
| 123 |
105 39 120
|
subdid |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐴 ) · 𝐷 ) · ( ( 𝐴 · ( ∗ ‘ 𝐷 ) ) − ( ( ∗ ‘ 𝐵 ) · 𝐶 ) ) ) = ( ( ( ( ∗ ‘ 𝐴 ) · 𝐷 ) · ( 𝐴 · ( ∗ ‘ 𝐷 ) ) ) − ( ( ( ∗ ‘ 𝐴 ) · 𝐷 ) · ( ( ∗ ‘ 𝐵 ) · 𝐶 ) ) ) ) |
| 124 |
24 31 13 38
|
mul4d |
⊢ ( 𝜑 → ( ( 𝐷 · ( ∗ ‘ 𝐴 ) ) · ( 𝐴 · ( ∗ ‘ 𝐷 ) ) ) = ( ( 𝐷 · 𝐴 ) · ( ( ∗ ‘ 𝐴 ) · ( ∗ ‘ 𝐷 ) ) ) ) |
| 125 |
31 24
|
mulcomd |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐴 ) · 𝐷 ) = ( 𝐷 · ( ∗ ‘ 𝐴 ) ) ) |
| 126 |
125
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐴 ) · 𝐷 ) · ( 𝐴 · ( ∗ ‘ 𝐷 ) ) ) = ( ( 𝐷 · ( ∗ ‘ 𝐴 ) ) · ( 𝐴 · ( ∗ ‘ 𝐷 ) ) ) ) |
| 127 |
13 24
|
mulcomd |
⊢ ( 𝜑 → ( 𝐴 · 𝐷 ) = ( 𝐷 · 𝐴 ) ) |
| 128 |
13 24
|
cjmuld |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝐴 · 𝐷 ) ) = ( ( ∗ ‘ 𝐴 ) · ( ∗ ‘ 𝐷 ) ) ) |
| 129 |
127 128
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐷 ) · ( ∗ ‘ ( 𝐴 · 𝐷 ) ) ) = ( ( 𝐷 · 𝐴 ) · ( ( ∗ ‘ 𝐴 ) · ( ∗ ‘ 𝐷 ) ) ) ) |
| 130 |
124 126 129
|
3eqtr4d |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐴 ) · 𝐷 ) · ( 𝐴 · ( ∗ ‘ 𝐷 ) ) ) = ( ( 𝐴 · 𝐷 ) · ( ∗ ‘ ( 𝐴 · 𝐷 ) ) ) ) |
| 131 |
130 43
|
eqtr4d |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐴 ) · 𝐷 ) · ( 𝐴 · ( ∗ ‘ 𝐷 ) ) ) = ( ( abs ‘ ( 𝐴 · 𝐷 ) ) ↑ 2 ) ) |
| 132 |
33 15
|
mulcomd |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐵 ) · 𝐶 ) = ( 𝐶 · ( ∗ ‘ 𝐵 ) ) ) |
| 133 |
132
|
oveq2d |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐴 ) · 𝐷 ) · ( ( ∗ ‘ 𝐵 ) · 𝐶 ) ) = ( ( ( ∗ ‘ 𝐴 ) · 𝐷 ) · ( 𝐶 · ( ∗ ‘ 𝐵 ) ) ) ) |
| 134 |
31 24 15 33
|
mul4d |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐴 ) · 𝐷 ) · ( 𝐶 · ( ∗ ‘ 𝐵 ) ) ) = ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) · ( 𝐷 · ( ∗ ‘ 𝐵 ) ) ) ) |
| 135 |
24 33
|
mulcomd |
⊢ ( 𝜑 → ( 𝐷 · ( ∗ ‘ 𝐵 ) ) = ( ( ∗ ‘ 𝐵 ) · 𝐷 ) ) |
| 136 |
135
|
oveq2d |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) · ( 𝐷 · ( ∗ ‘ 𝐵 ) ) ) = ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) · ( ( ∗ ‘ 𝐵 ) · 𝐷 ) ) ) |
| 137 |
133 134 136
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐴 ) · 𝐷 ) · ( ( ∗ ‘ 𝐵 ) · 𝐶 ) ) = ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) · ( ( ∗ ‘ 𝐵 ) · 𝐷 ) ) ) |
| 138 |
131 137
|
oveq12d |
⊢ ( 𝜑 → ( ( ( ( ∗ ‘ 𝐴 ) · 𝐷 ) · ( 𝐴 · ( ∗ ‘ 𝐷 ) ) ) − ( ( ( ∗ ‘ 𝐴 ) · 𝐷 ) · ( ( ∗ ‘ 𝐵 ) · 𝐶 ) ) ) = ( ( ( abs ‘ ( 𝐴 · 𝐷 ) ) ↑ 2 ) − ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) · ( ( ∗ ‘ 𝐵 ) · 𝐷 ) ) ) ) |
| 139 |
123 138
|
eqtrd |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐴 ) · 𝐷 ) · ( ( 𝐴 · ( ∗ ‘ 𝐷 ) ) − ( ( ∗ ‘ 𝐵 ) · 𝐶 ) ) ) = ( ( ( abs ‘ ( 𝐴 · 𝐷 ) ) ↑ 2 ) − ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) · ( ( ∗ ‘ 𝐵 ) · 𝐷 ) ) ) ) |
| 140 |
37 39 120
|
subdid |
⊢ ( 𝜑 → ( ( 𝐵 · ( ∗ ‘ 𝐶 ) ) · ( ( 𝐴 · ( ∗ ‘ 𝐷 ) ) − ( ( ∗ ‘ 𝐵 ) · 𝐶 ) ) ) = ( ( ( 𝐵 · ( ∗ ‘ 𝐶 ) ) · ( 𝐴 · ( ∗ ‘ 𝐷 ) ) ) − ( ( 𝐵 · ( ∗ ‘ 𝐶 ) ) · ( ( ∗ ‘ 𝐵 ) · 𝐶 ) ) ) ) |
| 141 |
132
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐵 · ( ∗ ‘ 𝐶 ) ) · ( ( ∗ ‘ 𝐵 ) · 𝐶 ) ) = ( ( 𝐵 · ( ∗ ‘ 𝐶 ) ) · ( 𝐶 · ( ∗ ‘ 𝐵 ) ) ) ) |
| 142 |
22 36 15 33
|
mul4d |
⊢ ( 𝜑 → ( ( 𝐵 · ( ∗ ‘ 𝐶 ) ) · ( 𝐶 · ( ∗ ‘ 𝐵 ) ) ) = ( ( 𝐵 · 𝐶 ) · ( ( ∗ ‘ 𝐶 ) · ( ∗ ‘ 𝐵 ) ) ) ) |
| 143 |
36 33
|
mulcomd |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐶 ) · ( ∗ ‘ 𝐵 ) ) = ( ( ∗ ‘ 𝐵 ) · ( ∗ ‘ 𝐶 ) ) ) |
| 144 |
22 15
|
cjmuld |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝐵 · 𝐶 ) ) = ( ( ∗ ‘ 𝐵 ) · ( ∗ ‘ 𝐶 ) ) ) |
| 145 |
143 144
|
eqtr4d |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐶 ) · ( ∗ ‘ 𝐵 ) ) = ( ∗ ‘ ( 𝐵 · 𝐶 ) ) ) |
| 146 |
145
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐵 · 𝐶 ) · ( ( ∗ ‘ 𝐶 ) · ( ∗ ‘ 𝐵 ) ) ) = ( ( 𝐵 · 𝐶 ) · ( ∗ ‘ ( 𝐵 · 𝐶 ) ) ) ) |
| 147 |
141 142 146
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝐵 · ( ∗ ‘ 𝐶 ) ) · ( ( ∗ ‘ 𝐵 ) · 𝐶 ) ) = ( ( 𝐵 · 𝐶 ) · ( ∗ ‘ ( 𝐵 · 𝐶 ) ) ) ) |
| 148 |
147 48
|
eqtr4d |
⊢ ( 𝜑 → ( ( 𝐵 · ( ∗ ‘ 𝐶 ) ) · ( ( ∗ ‘ 𝐵 ) · 𝐶 ) ) = ( ( abs ‘ ( 𝐵 · 𝐶 ) ) ↑ 2 ) ) |
| 149 |
148
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝐵 · ( ∗ ‘ 𝐶 ) ) · ( 𝐴 · ( ∗ ‘ 𝐷 ) ) ) − ( ( 𝐵 · ( ∗ ‘ 𝐶 ) ) · ( ( ∗ ‘ 𝐵 ) · 𝐶 ) ) ) = ( ( ( 𝐵 · ( ∗ ‘ 𝐶 ) ) · ( 𝐴 · ( ∗ ‘ 𝐷 ) ) ) − ( ( abs ‘ ( 𝐵 · 𝐶 ) ) ↑ 2 ) ) ) |
| 150 |
140 149
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐵 · ( ∗ ‘ 𝐶 ) ) · ( ( 𝐴 · ( ∗ ‘ 𝐷 ) ) − ( ( ∗ ‘ 𝐵 ) · 𝐶 ) ) ) = ( ( ( 𝐵 · ( ∗ ‘ 𝐶 ) ) · ( 𝐴 · ( ∗ ‘ 𝐷 ) ) ) − ( ( abs ‘ ( 𝐵 · 𝐶 ) ) ↑ 2 ) ) ) |
| 151 |
139 150
|
oveq12d |
⊢ ( 𝜑 → ( ( ( ( ∗ ‘ 𝐴 ) · 𝐷 ) · ( ( 𝐴 · ( ∗ ‘ 𝐷 ) ) − ( ( ∗ ‘ 𝐵 ) · 𝐶 ) ) ) − ( ( 𝐵 · ( ∗ ‘ 𝐶 ) ) · ( ( 𝐴 · ( ∗ ‘ 𝐷 ) ) − ( ( ∗ ‘ 𝐵 ) · 𝐶 ) ) ) ) = ( ( ( ( abs ‘ ( 𝐴 · 𝐷 ) ) ↑ 2 ) − ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) · ( ( ∗ ‘ 𝐵 ) · 𝐷 ) ) ) − ( ( ( 𝐵 · ( ∗ ‘ 𝐶 ) ) · ( 𝐴 · ( ∗ ‘ 𝐷 ) ) ) − ( ( abs ‘ ( 𝐵 · 𝐶 ) ) ↑ 2 ) ) ) ) |
| 152 |
46 35 40 51
|
subadd4d |
⊢ ( 𝜑 → ( ( ( ( abs ‘ ( 𝐴 · 𝐷 ) ) ↑ 2 ) − ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) · ( ( ∗ ‘ 𝐵 ) · 𝐷 ) ) ) − ( ( ( 𝐵 · ( ∗ ‘ 𝐶 ) ) · ( 𝐴 · ( ∗ ‘ 𝐷 ) ) ) − ( ( abs ‘ ( 𝐵 · 𝐶 ) ) ↑ 2 ) ) ) = ( ( ( ( abs ‘ ( 𝐴 · 𝐷 ) ) ↑ 2 ) + ( ( abs ‘ ( 𝐵 · 𝐶 ) ) ↑ 2 ) ) − ( ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) · ( ( ∗ ‘ 𝐵 ) · 𝐷 ) ) + ( ( 𝐵 · ( ∗ ‘ 𝐶 ) ) · ( 𝐴 · ( ∗ ‘ 𝐷 ) ) ) ) ) ) |
| 153 |
122 151 152
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( ( ∗ ‘ 𝐴 ) · 𝐷 ) − ( 𝐵 · ( ∗ ‘ 𝐶 ) ) ) · ( ( 𝐴 · ( ∗ ‘ 𝐷 ) ) − ( ( ∗ ‘ 𝐵 ) · 𝐶 ) ) ) = ( ( ( ( abs ‘ ( 𝐴 · 𝐷 ) ) ↑ 2 ) + ( ( abs ‘ ( 𝐵 · 𝐶 ) ) ↑ 2 ) ) − ( ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) · ( ( ∗ ‘ 𝐵 ) · 𝐷 ) ) + ( ( 𝐵 · ( ∗ ‘ 𝐶 ) ) · ( 𝐴 · ( ∗ ‘ 𝐷 ) ) ) ) ) ) |
| 154 |
107 119 153
|
3eqtrd |
⊢ ( 𝜑 → ( ( abs ‘ ( ( ( ∗ ‘ 𝐴 ) · 𝐷 ) − ( 𝐵 · ( ∗ ‘ 𝐶 ) ) ) ) ↑ 2 ) = ( ( ( ( abs ‘ ( 𝐴 · 𝐷 ) ) ↑ 2 ) + ( ( abs ‘ ( 𝐵 · 𝐶 ) ) ↑ 2 ) ) − ( ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) · ( ( ∗ ‘ 𝐵 ) · 𝐷 ) ) + ( ( 𝐵 · ( ∗ ‘ 𝐶 ) ) · ( 𝐴 · ( ∗ ‘ 𝐷 ) ) ) ) ) ) |
| 155 |
104 154
|
oveq12d |
⊢ ( 𝜑 → ( ( ( abs ‘ ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) + ( 𝐵 · ( ∗ ‘ 𝐷 ) ) ) ) ↑ 2 ) + ( ( abs ‘ ( ( ( ∗ ‘ 𝐴 ) · 𝐷 ) − ( 𝐵 · ( ∗ ‘ 𝐶 ) ) ) ) ↑ 2 ) ) = ( ( ( ( ( abs ‘ ( 𝐴 · 𝐶 ) ) ↑ 2 ) + ( ( abs ‘ ( 𝐵 · 𝐷 ) ) ↑ 2 ) ) + ( ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) · ( ( ∗ ‘ 𝐵 ) · 𝐷 ) ) + ( ( 𝐵 · ( ∗ ‘ 𝐶 ) ) · ( 𝐴 · ( ∗ ‘ 𝐷 ) ) ) ) ) + ( ( ( ( abs ‘ ( 𝐴 · 𝐷 ) ) ↑ 2 ) + ( ( abs ‘ ( 𝐵 · 𝐶 ) ) ↑ 2 ) ) − ( ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) · ( ( ∗ ‘ 𝐵 ) · 𝐷 ) ) + ( ( 𝐵 · ( ∗ ‘ 𝐶 ) ) · ( 𝐴 · ( ∗ ‘ 𝐷 ) ) ) ) ) ) ) |
| 156 |
13 31
|
mulcld |
⊢ ( 𝜑 → ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ∈ ℂ ) |
| 157 |
22 33
|
mulcld |
⊢ ( 𝜑 → ( 𝐵 · ( ∗ ‘ 𝐵 ) ) ∈ ℂ ) |
| 158 |
15 36
|
mulcld |
⊢ ( 𝜑 → ( 𝐶 · ( ∗ ‘ 𝐶 ) ) ∈ ℂ ) |
| 159 |
24 38
|
mulcld |
⊢ ( 𝜑 → ( 𝐷 · ( ∗ ‘ 𝐷 ) ) ∈ ℂ ) |
| 160 |
158 159
|
addcld |
⊢ ( 𝜑 → ( ( 𝐶 · ( ∗ ‘ 𝐶 ) ) + ( 𝐷 · ( ∗ ‘ 𝐷 ) ) ) ∈ ℂ ) |
| 161 |
156 157 160
|
adddird |
⊢ ( 𝜑 → ( ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) + ( 𝐵 · ( ∗ ‘ 𝐵 ) ) ) · ( ( 𝐶 · ( ∗ ‘ 𝐶 ) ) + ( 𝐷 · ( ∗ ‘ 𝐷 ) ) ) ) = ( ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) · ( ( 𝐶 · ( ∗ ‘ 𝐶 ) ) + ( 𝐷 · ( ∗ ‘ 𝐷 ) ) ) ) + ( ( 𝐵 · ( ∗ ‘ 𝐵 ) ) · ( ( 𝐶 · ( ∗ ‘ 𝐶 ) ) + ( 𝐷 · ( ∗ ‘ 𝐷 ) ) ) ) ) ) |
| 162 |
75
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐶 ) · ( ∗ ‘ ( 𝐴 · 𝐶 ) ) ) = ( ( 𝐴 · 𝐶 ) · ( ( ∗ ‘ 𝐴 ) · ( ∗ ‘ 𝐶 ) ) ) ) |
| 163 |
13 15 31 36
|
mul4d |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐶 ) · ( ( ∗ ‘ 𝐴 ) · ( ∗ ‘ 𝐶 ) ) ) = ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) · ( 𝐶 · ( ∗ ‘ 𝐶 ) ) ) ) |
| 164 |
17 162 163
|
3eqtrd |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐴 · 𝐶 ) ) ↑ 2 ) = ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) · ( 𝐶 · ( ∗ ‘ 𝐶 ) ) ) ) |
| 165 |
128
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐷 ) · ( ∗ ‘ ( 𝐴 · 𝐷 ) ) ) = ( ( 𝐴 · 𝐷 ) · ( ( ∗ ‘ 𝐴 ) · ( ∗ ‘ 𝐷 ) ) ) ) |
| 166 |
13 24 31 38
|
mul4d |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐷 ) · ( ( ∗ ‘ 𝐴 ) · ( ∗ ‘ 𝐷 ) ) ) = ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) · ( 𝐷 · ( ∗ ‘ 𝐷 ) ) ) ) |
| 167 |
43 165 166
|
3eqtrd |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐴 · 𝐷 ) ) ↑ 2 ) = ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) · ( 𝐷 · ( ∗ ‘ 𝐷 ) ) ) ) |
| 168 |
164 167
|
oveq12d |
⊢ ( 𝜑 → ( ( ( abs ‘ ( 𝐴 · 𝐶 ) ) ↑ 2 ) + ( ( abs ‘ ( 𝐴 · 𝐷 ) ) ↑ 2 ) ) = ( ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) · ( 𝐶 · ( ∗ ‘ 𝐶 ) ) ) + ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) · ( 𝐷 · ( ∗ ‘ 𝐷 ) ) ) ) ) |
| 169 |
156 158 159
|
adddid |
⊢ ( 𝜑 → ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) · ( ( 𝐶 · ( ∗ ‘ 𝐶 ) ) + ( 𝐷 · ( ∗ ‘ 𝐷 ) ) ) ) = ( ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) · ( 𝐶 · ( ∗ ‘ 𝐶 ) ) ) + ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) · ( 𝐷 · ( ∗ ‘ 𝐷 ) ) ) ) ) |
| 170 |
168 169
|
eqtr4d |
⊢ ( 𝜑 → ( ( ( abs ‘ ( 𝐴 · 𝐶 ) ) ↑ 2 ) + ( ( abs ‘ ( 𝐴 · 𝐷 ) ) ↑ 2 ) ) = ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) · ( ( 𝐶 · ( ∗ ‘ 𝐶 ) ) + ( 𝐷 · ( ∗ ‘ 𝐷 ) ) ) ) ) |
| 171 |
144
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐵 · 𝐶 ) · ( ∗ ‘ ( 𝐵 · 𝐶 ) ) ) = ( ( 𝐵 · 𝐶 ) · ( ( ∗ ‘ 𝐵 ) · ( ∗ ‘ 𝐶 ) ) ) ) |
| 172 |
22 15 33 36
|
mul4d |
⊢ ( 𝜑 → ( ( 𝐵 · 𝐶 ) · ( ( ∗ ‘ 𝐵 ) · ( ∗ ‘ 𝐶 ) ) ) = ( ( 𝐵 · ( ∗ ‘ 𝐵 ) ) · ( 𝐶 · ( ∗ ‘ 𝐶 ) ) ) ) |
| 173 |
48 171 172
|
3eqtrd |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐵 · 𝐶 ) ) ↑ 2 ) = ( ( 𝐵 · ( ∗ ‘ 𝐵 ) ) · ( 𝐶 · ( ∗ ‘ 𝐶 ) ) ) ) |
| 174 |
91
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐵 · 𝐷 ) · ( ∗ ‘ ( 𝐵 · 𝐷 ) ) ) = ( ( 𝐵 · 𝐷 ) · ( ( ∗ ‘ 𝐵 ) · ( ∗ ‘ 𝐷 ) ) ) ) |
| 175 |
22 24 33 38
|
mul4d |
⊢ ( 𝜑 → ( ( 𝐵 · 𝐷 ) · ( ( ∗ ‘ 𝐵 ) · ( ∗ ‘ 𝐷 ) ) ) = ( ( 𝐵 · ( ∗ ‘ 𝐵 ) ) · ( 𝐷 · ( ∗ ‘ 𝐷 ) ) ) ) |
| 176 |
26 174 175
|
3eqtrd |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐵 · 𝐷 ) ) ↑ 2 ) = ( ( 𝐵 · ( ∗ ‘ 𝐵 ) ) · ( 𝐷 · ( ∗ ‘ 𝐷 ) ) ) ) |
| 177 |
173 176
|
oveq12d |
⊢ ( 𝜑 → ( ( ( abs ‘ ( 𝐵 · 𝐶 ) ) ↑ 2 ) + ( ( abs ‘ ( 𝐵 · 𝐷 ) ) ↑ 2 ) ) = ( ( ( 𝐵 · ( ∗ ‘ 𝐵 ) ) · ( 𝐶 · ( ∗ ‘ 𝐶 ) ) ) + ( ( 𝐵 · ( ∗ ‘ 𝐵 ) ) · ( 𝐷 · ( ∗ ‘ 𝐷 ) ) ) ) ) |
| 178 |
157 158 159
|
adddid |
⊢ ( 𝜑 → ( ( 𝐵 · ( ∗ ‘ 𝐵 ) ) · ( ( 𝐶 · ( ∗ ‘ 𝐶 ) ) + ( 𝐷 · ( ∗ ‘ 𝐷 ) ) ) ) = ( ( ( 𝐵 · ( ∗ ‘ 𝐵 ) ) · ( 𝐶 · ( ∗ ‘ 𝐶 ) ) ) + ( ( 𝐵 · ( ∗ ‘ 𝐵 ) ) · ( 𝐷 · ( ∗ ‘ 𝐷 ) ) ) ) ) |
| 179 |
177 178
|
eqtr4d |
⊢ ( 𝜑 → ( ( ( abs ‘ ( 𝐵 · 𝐶 ) ) ↑ 2 ) + ( ( abs ‘ ( 𝐵 · 𝐷 ) ) ↑ 2 ) ) = ( ( 𝐵 · ( ∗ ‘ 𝐵 ) ) · ( ( 𝐶 · ( ∗ ‘ 𝐶 ) ) + ( 𝐷 · ( ∗ ‘ 𝐷 ) ) ) ) ) |
| 180 |
170 179
|
oveq12d |
⊢ ( 𝜑 → ( ( ( ( abs ‘ ( 𝐴 · 𝐶 ) ) ↑ 2 ) + ( ( abs ‘ ( 𝐴 · 𝐷 ) ) ↑ 2 ) ) + ( ( ( abs ‘ ( 𝐵 · 𝐶 ) ) ↑ 2 ) + ( ( abs ‘ ( 𝐵 · 𝐷 ) ) ↑ 2 ) ) ) = ( ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) · ( ( 𝐶 · ( ∗ ‘ 𝐶 ) ) + ( 𝐷 · ( ∗ ‘ 𝐷 ) ) ) ) + ( ( 𝐵 · ( ∗ ‘ 𝐵 ) ) · ( ( 𝐶 · ( ∗ ‘ 𝐶 ) ) + ( 𝐷 · ( ∗ ‘ 𝐷 ) ) ) ) ) ) |
| 181 |
161 180
|
eqtr4d |
⊢ ( 𝜑 → ( ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) + ( 𝐵 · ( ∗ ‘ 𝐵 ) ) ) · ( ( 𝐶 · ( ∗ ‘ 𝐶 ) ) + ( 𝐷 · ( ∗ ‘ 𝐷 ) ) ) ) = ( ( ( ( abs ‘ ( 𝐴 · 𝐶 ) ) ↑ 2 ) + ( ( abs ‘ ( 𝐴 · 𝐷 ) ) ↑ 2 ) ) + ( ( ( abs ‘ ( 𝐵 · 𝐶 ) ) ↑ 2 ) + ( ( abs ‘ ( 𝐵 · 𝐷 ) ) ↑ 2 ) ) ) ) |
| 182 |
13
|
absvalsqd |
⊢ ( 𝜑 → ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) |
| 183 |
22
|
absvalsqd |
⊢ ( 𝜑 → ( ( abs ‘ 𝐵 ) ↑ 2 ) = ( 𝐵 · ( ∗ ‘ 𝐵 ) ) ) |
| 184 |
182 183
|
oveq12d |
⊢ ( 𝜑 → ( ( ( abs ‘ 𝐴 ) ↑ 2 ) + ( ( abs ‘ 𝐵 ) ↑ 2 ) ) = ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) + ( 𝐵 · ( ∗ ‘ 𝐵 ) ) ) ) |
| 185 |
6 184
|
eqtrid |
⊢ ( 𝜑 → 𝑋 = ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) + ( 𝐵 · ( ∗ ‘ 𝐵 ) ) ) ) |
| 186 |
15
|
absvalsqd |
⊢ ( 𝜑 → ( ( abs ‘ 𝐶 ) ↑ 2 ) = ( 𝐶 · ( ∗ ‘ 𝐶 ) ) ) |
| 187 |
24
|
absvalsqd |
⊢ ( 𝜑 → ( ( abs ‘ 𝐷 ) ↑ 2 ) = ( 𝐷 · ( ∗ ‘ 𝐷 ) ) ) |
| 188 |
186 187
|
oveq12d |
⊢ ( 𝜑 → ( ( ( abs ‘ 𝐶 ) ↑ 2 ) + ( ( abs ‘ 𝐷 ) ↑ 2 ) ) = ( ( 𝐶 · ( ∗ ‘ 𝐶 ) ) + ( 𝐷 · ( ∗ ‘ 𝐷 ) ) ) ) |
| 189 |
7 188
|
eqtrid |
⊢ ( 𝜑 → 𝑌 = ( ( 𝐶 · ( ∗ ‘ 𝐶 ) ) + ( 𝐷 · ( ∗ ‘ 𝐷 ) ) ) ) |
| 190 |
185 189
|
oveq12d |
⊢ ( 𝜑 → ( 𝑋 · 𝑌 ) = ( ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) + ( 𝐵 · ( ∗ ‘ 𝐵 ) ) ) · ( ( 𝐶 · ( ∗ ‘ 𝐶 ) ) + ( 𝐷 · ( ∗ ‘ 𝐷 ) ) ) ) ) |
| 191 |
20 29 46 51
|
add42d |
⊢ ( 𝜑 → ( ( ( ( abs ‘ ( 𝐴 · 𝐶 ) ) ↑ 2 ) + ( ( abs ‘ ( 𝐵 · 𝐷 ) ) ↑ 2 ) ) + ( ( ( abs ‘ ( 𝐴 · 𝐷 ) ) ↑ 2 ) + ( ( abs ‘ ( 𝐵 · 𝐶 ) ) ↑ 2 ) ) ) = ( ( ( ( abs ‘ ( 𝐴 · 𝐶 ) ) ↑ 2 ) + ( ( abs ‘ ( 𝐴 · 𝐷 ) ) ↑ 2 ) ) + ( ( ( abs ‘ ( 𝐵 · 𝐶 ) ) ↑ 2 ) + ( ( abs ‘ ( 𝐵 · 𝐷 ) ) ↑ 2 ) ) ) ) |
| 192 |
181 190 191
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝑋 · 𝑌 ) = ( ( ( ( abs ‘ ( 𝐴 · 𝐶 ) ) ↑ 2 ) + ( ( abs ‘ ( 𝐵 · 𝐷 ) ) ↑ 2 ) ) + ( ( ( abs ‘ ( 𝐴 · 𝐷 ) ) ↑ 2 ) + ( ( abs ‘ ( 𝐵 · 𝐶 ) ) ↑ 2 ) ) ) ) |
| 193 |
53 155 192
|
3eqtr4d |
⊢ ( 𝜑 → ( ( ( abs ‘ ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) + ( 𝐵 · ( ∗ ‘ 𝐷 ) ) ) ) ↑ 2 ) + ( ( abs ‘ ( ( ( ∗ ‘ 𝐴 ) · 𝐷 ) − ( 𝐵 · ( ∗ ‘ 𝐶 ) ) ) ) ↑ 2 ) ) = ( 𝑋 · 𝑌 ) ) |
| 194 |
193
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( abs ‘ ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) + ( 𝐵 · ( ∗ ‘ 𝐷 ) ) ) ) ↑ 2 ) + ( ( abs ‘ ( ( ( ∗ ‘ 𝐴 ) · 𝐷 ) − ( 𝐵 · ( ∗ ‘ 𝐶 ) ) ) ) ↑ 2 ) ) / ( 𝑀 ↑ 2 ) ) = ( ( 𝑋 · 𝑌 ) / ( 𝑀 ↑ 2 ) ) ) |
| 195 |
8
|
nncnd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
| 196 |
8
|
nnne0d |
⊢ ( 𝜑 → 𝑀 ≠ 0 ) |
| 197 |
55 195 196
|
absdivd |
⊢ ( 𝜑 → ( abs ‘ ( ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) + ( 𝐵 · ( ∗ ‘ 𝐷 ) ) ) / 𝑀 ) ) = ( ( abs ‘ ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) + ( 𝐵 · ( ∗ ‘ 𝐷 ) ) ) ) / ( abs ‘ 𝑀 ) ) ) |
| 198 |
8
|
nnred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 199 |
8
|
nnnn0d |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
| 200 |
199
|
nn0ge0d |
⊢ ( 𝜑 → 0 ≤ 𝑀 ) |
| 201 |
198 200
|
absidd |
⊢ ( 𝜑 → ( abs ‘ 𝑀 ) = 𝑀 ) |
| 202 |
201
|
oveq2d |
⊢ ( 𝜑 → ( ( abs ‘ ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) + ( 𝐵 · ( ∗ ‘ 𝐷 ) ) ) ) / ( abs ‘ 𝑀 ) ) = ( ( abs ‘ ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) + ( 𝐵 · ( ∗ ‘ 𝐷 ) ) ) ) / 𝑀 ) ) |
| 203 |
197 202
|
eqtrd |
⊢ ( 𝜑 → ( abs ‘ ( ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) + ( 𝐵 · ( ∗ ‘ 𝐷 ) ) ) / 𝑀 ) ) = ( ( abs ‘ ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) + ( 𝐵 · ( ∗ ‘ 𝐷 ) ) ) ) / 𝑀 ) ) |
| 204 |
203
|
oveq1d |
⊢ ( 𝜑 → ( ( abs ‘ ( ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) + ( 𝐵 · ( ∗ ‘ 𝐷 ) ) ) / 𝑀 ) ) ↑ 2 ) = ( ( ( abs ‘ ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) + ( 𝐵 · ( ∗ ‘ 𝐷 ) ) ) ) / 𝑀 ) ↑ 2 ) ) |
| 205 |
55
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) + ( 𝐵 · ( ∗ ‘ 𝐷 ) ) ) ) ∈ ℝ ) |
| 206 |
205
|
recnd |
⊢ ( 𝜑 → ( abs ‘ ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) + ( 𝐵 · ( ∗ ‘ 𝐷 ) ) ) ) ∈ ℂ ) |
| 207 |
206 195 196
|
sqdivd |
⊢ ( 𝜑 → ( ( ( abs ‘ ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) + ( 𝐵 · ( ∗ ‘ 𝐷 ) ) ) ) / 𝑀 ) ↑ 2 ) = ( ( ( abs ‘ ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) + ( 𝐵 · ( ∗ ‘ 𝐷 ) ) ) ) ↑ 2 ) / ( 𝑀 ↑ 2 ) ) ) |
| 208 |
204 207
|
eqtrd |
⊢ ( 𝜑 → ( ( abs ‘ ( ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) + ( 𝐵 · ( ∗ ‘ 𝐷 ) ) ) / 𝑀 ) ) ↑ 2 ) = ( ( ( abs ‘ ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) + ( 𝐵 · ( ∗ ‘ 𝐷 ) ) ) ) ↑ 2 ) / ( 𝑀 ↑ 2 ) ) ) |
| 209 |
106 195 196
|
absdivd |
⊢ ( 𝜑 → ( abs ‘ ( ( ( ( ∗ ‘ 𝐴 ) · 𝐷 ) − ( 𝐵 · ( ∗ ‘ 𝐶 ) ) ) / 𝑀 ) ) = ( ( abs ‘ ( ( ( ∗ ‘ 𝐴 ) · 𝐷 ) − ( 𝐵 · ( ∗ ‘ 𝐶 ) ) ) ) / ( abs ‘ 𝑀 ) ) ) |
| 210 |
201
|
oveq2d |
⊢ ( 𝜑 → ( ( abs ‘ ( ( ( ∗ ‘ 𝐴 ) · 𝐷 ) − ( 𝐵 · ( ∗ ‘ 𝐶 ) ) ) ) / ( abs ‘ 𝑀 ) ) = ( ( abs ‘ ( ( ( ∗ ‘ 𝐴 ) · 𝐷 ) − ( 𝐵 · ( ∗ ‘ 𝐶 ) ) ) ) / 𝑀 ) ) |
| 211 |
209 210
|
eqtrd |
⊢ ( 𝜑 → ( abs ‘ ( ( ( ( ∗ ‘ 𝐴 ) · 𝐷 ) − ( 𝐵 · ( ∗ ‘ 𝐶 ) ) ) / 𝑀 ) ) = ( ( abs ‘ ( ( ( ∗ ‘ 𝐴 ) · 𝐷 ) − ( 𝐵 · ( ∗ ‘ 𝐶 ) ) ) ) / 𝑀 ) ) |
| 212 |
211
|
oveq1d |
⊢ ( 𝜑 → ( ( abs ‘ ( ( ( ( ∗ ‘ 𝐴 ) · 𝐷 ) − ( 𝐵 · ( ∗ ‘ 𝐶 ) ) ) / 𝑀 ) ) ↑ 2 ) = ( ( ( abs ‘ ( ( ( ∗ ‘ 𝐴 ) · 𝐷 ) − ( 𝐵 · ( ∗ ‘ 𝐶 ) ) ) ) / 𝑀 ) ↑ 2 ) ) |
| 213 |
106
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( ( ( ∗ ‘ 𝐴 ) · 𝐷 ) − ( 𝐵 · ( ∗ ‘ 𝐶 ) ) ) ) ∈ ℝ ) |
| 214 |
213
|
recnd |
⊢ ( 𝜑 → ( abs ‘ ( ( ( ∗ ‘ 𝐴 ) · 𝐷 ) − ( 𝐵 · ( ∗ ‘ 𝐶 ) ) ) ) ∈ ℂ ) |
| 215 |
214 195 196
|
sqdivd |
⊢ ( 𝜑 → ( ( ( abs ‘ ( ( ( ∗ ‘ 𝐴 ) · 𝐷 ) − ( 𝐵 · ( ∗ ‘ 𝐶 ) ) ) ) / 𝑀 ) ↑ 2 ) = ( ( ( abs ‘ ( ( ( ∗ ‘ 𝐴 ) · 𝐷 ) − ( 𝐵 · ( ∗ ‘ 𝐶 ) ) ) ) ↑ 2 ) / ( 𝑀 ↑ 2 ) ) ) |
| 216 |
212 215
|
eqtrd |
⊢ ( 𝜑 → ( ( abs ‘ ( ( ( ( ∗ ‘ 𝐴 ) · 𝐷 ) − ( 𝐵 · ( ∗ ‘ 𝐶 ) ) ) / 𝑀 ) ) ↑ 2 ) = ( ( ( abs ‘ ( ( ( ∗ ‘ 𝐴 ) · 𝐷 ) − ( 𝐵 · ( ∗ ‘ 𝐶 ) ) ) ) ↑ 2 ) / ( 𝑀 ↑ 2 ) ) ) |
| 217 |
208 216
|
oveq12d |
⊢ ( 𝜑 → ( ( ( abs ‘ ( ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) + ( 𝐵 · ( ∗ ‘ 𝐷 ) ) ) / 𝑀 ) ) ↑ 2 ) + ( ( abs ‘ ( ( ( ( ∗ ‘ 𝐴 ) · 𝐷 ) − ( 𝐵 · ( ∗ ‘ 𝐶 ) ) ) / 𝑀 ) ) ↑ 2 ) ) = ( ( ( ( abs ‘ ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) + ( 𝐵 · ( ∗ ‘ 𝐷 ) ) ) ) ↑ 2 ) / ( 𝑀 ↑ 2 ) ) + ( ( ( abs ‘ ( ( ( ∗ ‘ 𝐴 ) · 𝐷 ) − ( 𝐵 · ( ∗ ‘ 𝐶 ) ) ) ) ↑ 2 ) / ( 𝑀 ↑ 2 ) ) ) ) |
| 218 |
30 41
|
addcld |
⊢ ( 𝜑 → ( ( ( ( abs ‘ ( 𝐴 · 𝐶 ) ) ↑ 2 ) + ( ( abs ‘ ( 𝐵 · 𝐷 ) ) ↑ 2 ) ) + ( ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) · ( ( ∗ ‘ 𝐵 ) · 𝐷 ) ) + ( ( 𝐵 · ( ∗ ‘ 𝐶 ) ) · ( 𝐴 · ( ∗ ‘ 𝐷 ) ) ) ) ) ∈ ℂ ) |
| 219 |
104 218
|
eqeltrd |
⊢ ( 𝜑 → ( ( abs ‘ ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) + ( 𝐵 · ( ∗ ‘ 𝐷 ) ) ) ) ↑ 2 ) ∈ ℂ ) |
| 220 |
52 41
|
subcld |
⊢ ( 𝜑 → ( ( ( ( abs ‘ ( 𝐴 · 𝐷 ) ) ↑ 2 ) + ( ( abs ‘ ( 𝐵 · 𝐶 ) ) ↑ 2 ) ) − ( ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) · ( ( ∗ ‘ 𝐵 ) · 𝐷 ) ) + ( ( 𝐵 · ( ∗ ‘ 𝐶 ) ) · ( 𝐴 · ( ∗ ‘ 𝐷 ) ) ) ) ) ∈ ℂ ) |
| 221 |
154 220
|
eqeltrd |
⊢ ( 𝜑 → ( ( abs ‘ ( ( ( ∗ ‘ 𝐴 ) · 𝐷 ) − ( 𝐵 · ( ∗ ‘ 𝐶 ) ) ) ) ↑ 2 ) ∈ ℂ ) |
| 222 |
8
|
nnsqcld |
⊢ ( 𝜑 → ( 𝑀 ↑ 2 ) ∈ ℕ ) |
| 223 |
222
|
nncnd |
⊢ ( 𝜑 → ( 𝑀 ↑ 2 ) ∈ ℂ ) |
| 224 |
222
|
nnne0d |
⊢ ( 𝜑 → ( 𝑀 ↑ 2 ) ≠ 0 ) |
| 225 |
219 221 223 224
|
divdird |
⊢ ( 𝜑 → ( ( ( ( abs ‘ ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) + ( 𝐵 · ( ∗ ‘ 𝐷 ) ) ) ) ↑ 2 ) + ( ( abs ‘ ( ( ( ∗ ‘ 𝐴 ) · 𝐷 ) − ( 𝐵 · ( ∗ ‘ 𝐶 ) ) ) ) ↑ 2 ) ) / ( 𝑀 ↑ 2 ) ) = ( ( ( ( abs ‘ ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) + ( 𝐵 · ( ∗ ‘ 𝐷 ) ) ) ) ↑ 2 ) / ( 𝑀 ↑ 2 ) ) + ( ( ( abs ‘ ( ( ( ∗ ‘ 𝐴 ) · 𝐷 ) − ( 𝐵 · ( ∗ ‘ 𝐶 ) ) ) ) ↑ 2 ) / ( 𝑀 ↑ 2 ) ) ) ) |
| 226 |
217 225
|
eqtr4d |
⊢ ( 𝜑 → ( ( ( abs ‘ ( ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) + ( 𝐵 · ( ∗ ‘ 𝐷 ) ) ) / 𝑀 ) ) ↑ 2 ) + ( ( abs ‘ ( ( ( ( ∗ ‘ 𝐴 ) · 𝐷 ) − ( 𝐵 · ( ∗ ‘ 𝐶 ) ) ) / 𝑀 ) ) ↑ 2 ) ) = ( ( ( ( abs ‘ ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) + ( 𝐵 · ( ∗ ‘ 𝐷 ) ) ) ) ↑ 2 ) + ( ( abs ‘ ( ( ( ∗ ‘ 𝐴 ) · 𝐷 ) − ( 𝐵 · ( ∗ ‘ 𝐶 ) ) ) ) ↑ 2 ) ) / ( 𝑀 ↑ 2 ) ) ) |
| 227 |
182 156
|
eqeltrd |
⊢ ( 𝜑 → ( ( abs ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ) |
| 228 |
183 157
|
eqeltrd |
⊢ ( 𝜑 → ( ( abs ‘ 𝐵 ) ↑ 2 ) ∈ ℂ ) |
| 229 |
227 228
|
addcld |
⊢ ( 𝜑 → ( ( ( abs ‘ 𝐴 ) ↑ 2 ) + ( ( abs ‘ 𝐵 ) ↑ 2 ) ) ∈ ℂ ) |
| 230 |
6 229
|
eqeltrid |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
| 231 |
189 160
|
eqeltrd |
⊢ ( 𝜑 → 𝑌 ∈ ℂ ) |
| 232 |
230 195 231 195 196 196
|
divmuldivd |
⊢ ( 𝜑 → ( ( 𝑋 / 𝑀 ) · ( 𝑌 / 𝑀 ) ) = ( ( 𝑋 · 𝑌 ) / ( 𝑀 · 𝑀 ) ) ) |
| 233 |
195
|
sqvald |
⊢ ( 𝜑 → ( 𝑀 ↑ 2 ) = ( 𝑀 · 𝑀 ) ) |
| 234 |
233
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝑋 · 𝑌 ) / ( 𝑀 ↑ 2 ) ) = ( ( 𝑋 · 𝑌 ) / ( 𝑀 · 𝑀 ) ) ) |
| 235 |
232 234
|
eqtr4d |
⊢ ( 𝜑 → ( ( 𝑋 / 𝑀 ) · ( 𝑌 / 𝑀 ) ) = ( ( 𝑋 · 𝑌 ) / ( 𝑀 ↑ 2 ) ) ) |
| 236 |
194 226 235
|
3eqtr4d |
⊢ ( 𝜑 → ( ( ( abs ‘ ( ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) + ( 𝐵 · ( ∗ ‘ 𝐷 ) ) ) / 𝑀 ) ) ↑ 2 ) + ( ( abs ‘ ( ( ( ( ∗ ‘ 𝐴 ) · 𝐷 ) − ( 𝐵 · ( ∗ ‘ 𝐶 ) ) ) / 𝑀 ) ) ↑ 2 ) ) = ( ( 𝑋 / 𝑀 ) · ( 𝑌 / 𝑀 ) ) ) |
| 237 |
230 55
|
nncand |
⊢ ( 𝜑 → ( 𝑋 − ( 𝑋 − ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) + ( 𝐵 · ( ∗ ‘ 𝐷 ) ) ) ) ) = ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) + ( 𝐵 · ( ∗ ‘ 𝐷 ) ) ) ) |
| 238 |
156 157 32 54
|
addsub4d |
⊢ ( 𝜑 → ( ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) + ( 𝐵 · ( ∗ ‘ 𝐵 ) ) ) − ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) + ( 𝐵 · ( ∗ ‘ 𝐷 ) ) ) ) = ( ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) − ( ( ∗ ‘ 𝐴 ) · 𝐶 ) ) + ( ( 𝐵 · ( ∗ ‘ 𝐵 ) ) − ( 𝐵 · ( ∗ ‘ 𝐷 ) ) ) ) ) |
| 239 |
185
|
oveq1d |
⊢ ( 𝜑 → ( 𝑋 − ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) + ( 𝐵 · ( ∗ ‘ 𝐷 ) ) ) ) = ( ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) + ( 𝐵 · ( ∗ ‘ 𝐵 ) ) ) − ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) + ( 𝐵 · ( ∗ ‘ 𝐷 ) ) ) ) ) |
| 240 |
31 13 15
|
subdid |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐴 ) · ( 𝐴 − 𝐶 ) ) = ( ( ( ∗ ‘ 𝐴 ) · 𝐴 ) − ( ( ∗ ‘ 𝐴 ) · 𝐶 ) ) ) |
| 241 |
31 13
|
mulcomd |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐴 ) · 𝐴 ) = ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) |
| 242 |
241
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐴 ) · 𝐴 ) − ( ( ∗ ‘ 𝐴 ) · 𝐶 ) ) = ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) − ( ( ∗ ‘ 𝐴 ) · 𝐶 ) ) ) |
| 243 |
240 242
|
eqtrd |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐴 ) · ( 𝐴 − 𝐶 ) ) = ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) − ( ( ∗ ‘ 𝐴 ) · 𝐶 ) ) ) |
| 244 |
|
cjsub |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( ∗ ‘ ( 𝐵 − 𝐷 ) ) = ( ( ∗ ‘ 𝐵 ) − ( ∗ ‘ 𝐷 ) ) ) |
| 245 |
22 24 244
|
syl2anc |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝐵 − 𝐷 ) ) = ( ( ∗ ‘ 𝐵 ) − ( ∗ ‘ 𝐷 ) ) ) |
| 246 |
245
|
oveq2d |
⊢ ( 𝜑 → ( 𝐵 · ( ∗ ‘ ( 𝐵 − 𝐷 ) ) ) = ( 𝐵 · ( ( ∗ ‘ 𝐵 ) − ( ∗ ‘ 𝐷 ) ) ) ) |
| 247 |
22 33 38
|
subdid |
⊢ ( 𝜑 → ( 𝐵 · ( ( ∗ ‘ 𝐵 ) − ( ∗ ‘ 𝐷 ) ) ) = ( ( 𝐵 · ( ∗ ‘ 𝐵 ) ) − ( 𝐵 · ( ∗ ‘ 𝐷 ) ) ) ) |
| 248 |
246 247
|
eqtrd |
⊢ ( 𝜑 → ( 𝐵 · ( ∗ ‘ ( 𝐵 − 𝐷 ) ) ) = ( ( 𝐵 · ( ∗ ‘ 𝐵 ) ) − ( 𝐵 · ( ∗ ‘ 𝐷 ) ) ) ) |
| 249 |
243 248
|
oveq12d |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐴 ) · ( 𝐴 − 𝐶 ) ) + ( 𝐵 · ( ∗ ‘ ( 𝐵 − 𝐷 ) ) ) ) = ( ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) − ( ( ∗ ‘ 𝐴 ) · 𝐶 ) ) + ( ( 𝐵 · ( ∗ ‘ 𝐵 ) ) − ( 𝐵 · ( ∗ ‘ 𝐷 ) ) ) ) ) |
| 250 |
238 239 249
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝑋 − ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) + ( 𝐵 · ( ∗ ‘ 𝐷 ) ) ) ) = ( ( ( ∗ ‘ 𝐴 ) · ( 𝐴 − 𝐶 ) ) + ( 𝐵 · ( ∗ ‘ ( 𝐵 − 𝐷 ) ) ) ) ) |
| 251 |
250
|
oveq2d |
⊢ ( 𝜑 → ( 𝑋 − ( 𝑋 − ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) + ( 𝐵 · ( ∗ ‘ 𝐷 ) ) ) ) ) = ( 𝑋 − ( ( ( ∗ ‘ 𝐴 ) · ( 𝐴 − 𝐶 ) ) + ( 𝐵 · ( ∗ ‘ ( 𝐵 − 𝐷 ) ) ) ) ) ) |
| 252 |
237 251
|
eqtr3d |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) + ( 𝐵 · ( ∗ ‘ 𝐷 ) ) ) = ( 𝑋 − ( ( ( ∗ ‘ 𝐴 ) · ( 𝐴 − 𝐶 ) ) + ( 𝐵 · ( ∗ ‘ ( 𝐵 − 𝐷 ) ) ) ) ) ) |
| 253 |
252
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) + ( 𝐵 · ( ∗ ‘ 𝐷 ) ) ) / 𝑀 ) = ( ( 𝑋 − ( ( ( ∗ ‘ 𝐴 ) · ( 𝐴 − 𝐶 ) ) + ( 𝐵 · ( ∗ ‘ ( 𝐵 − 𝐷 ) ) ) ) ) / 𝑀 ) ) |
| 254 |
13 15
|
subcld |
⊢ ( 𝜑 → ( 𝐴 − 𝐶 ) ∈ ℂ ) |
| 255 |
31 254
|
mulcld |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐴 ) · ( 𝐴 − 𝐶 ) ) ∈ ℂ ) |
| 256 |
22 24
|
subcld |
⊢ ( 𝜑 → ( 𝐵 − 𝐷 ) ∈ ℂ ) |
| 257 |
256
|
cjcld |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝐵 − 𝐷 ) ) ∈ ℂ ) |
| 258 |
22 257
|
mulcld |
⊢ ( 𝜑 → ( 𝐵 · ( ∗ ‘ ( 𝐵 − 𝐷 ) ) ) ∈ ℂ ) |
| 259 |
255 258
|
addcld |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐴 ) · ( 𝐴 − 𝐶 ) ) + ( 𝐵 · ( ∗ ‘ ( 𝐵 − 𝐷 ) ) ) ) ∈ ℂ ) |
| 260 |
230 259 195 196
|
divsubdird |
⊢ ( 𝜑 → ( ( 𝑋 − ( ( ( ∗ ‘ 𝐴 ) · ( 𝐴 − 𝐶 ) ) + ( 𝐵 · ( ∗ ‘ ( 𝐵 − 𝐷 ) ) ) ) ) / 𝑀 ) = ( ( 𝑋 / 𝑀 ) − ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝐴 − 𝐶 ) ) + ( 𝐵 · ( ∗ ‘ ( 𝐵 − 𝐷 ) ) ) ) / 𝑀 ) ) ) |
| 261 |
255 258 195 196
|
divdird |
⊢ ( 𝜑 → ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝐴 − 𝐶 ) ) + ( 𝐵 · ( ∗ ‘ ( 𝐵 − 𝐷 ) ) ) ) / 𝑀 ) = ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝐴 − 𝐶 ) ) / 𝑀 ) + ( ( 𝐵 · ( ∗ ‘ ( 𝐵 − 𝐷 ) ) ) / 𝑀 ) ) ) |
| 262 |
31 254 195 196
|
divassd |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐴 ) · ( 𝐴 − 𝐶 ) ) / 𝑀 ) = ( ( ∗ ‘ 𝐴 ) · ( ( 𝐴 − 𝐶 ) / 𝑀 ) ) ) |
| 263 |
22 257 195 196
|
divassd |
⊢ ( 𝜑 → ( ( 𝐵 · ( ∗ ‘ ( 𝐵 − 𝐷 ) ) ) / 𝑀 ) = ( 𝐵 · ( ( ∗ ‘ ( 𝐵 − 𝐷 ) ) / 𝑀 ) ) ) |
| 264 |
256 195 196
|
cjdivd |
⊢ ( 𝜑 → ( ∗ ‘ ( ( 𝐵 − 𝐷 ) / 𝑀 ) ) = ( ( ∗ ‘ ( 𝐵 − 𝐷 ) ) / ( ∗ ‘ 𝑀 ) ) ) |
| 265 |
198
|
cjred |
⊢ ( 𝜑 → ( ∗ ‘ 𝑀 ) = 𝑀 ) |
| 266 |
265
|
oveq2d |
⊢ ( 𝜑 → ( ( ∗ ‘ ( 𝐵 − 𝐷 ) ) / ( ∗ ‘ 𝑀 ) ) = ( ( ∗ ‘ ( 𝐵 − 𝐷 ) ) / 𝑀 ) ) |
| 267 |
264 266
|
eqtrd |
⊢ ( 𝜑 → ( ∗ ‘ ( ( 𝐵 − 𝐷 ) / 𝑀 ) ) = ( ( ∗ ‘ ( 𝐵 − 𝐷 ) ) / 𝑀 ) ) |
| 268 |
267
|
oveq2d |
⊢ ( 𝜑 → ( 𝐵 · ( ∗ ‘ ( ( 𝐵 − 𝐷 ) / 𝑀 ) ) ) = ( 𝐵 · ( ( ∗ ‘ ( 𝐵 − 𝐷 ) ) / 𝑀 ) ) ) |
| 269 |
263 268
|
eqtr4d |
⊢ ( 𝜑 → ( ( 𝐵 · ( ∗ ‘ ( 𝐵 − 𝐷 ) ) ) / 𝑀 ) = ( 𝐵 · ( ∗ ‘ ( ( 𝐵 − 𝐷 ) / 𝑀 ) ) ) ) |
| 270 |
262 269
|
oveq12d |
⊢ ( 𝜑 → ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝐴 − 𝐶 ) ) / 𝑀 ) + ( ( 𝐵 · ( ∗ ‘ ( 𝐵 − 𝐷 ) ) ) / 𝑀 ) ) = ( ( ( ∗ ‘ 𝐴 ) · ( ( 𝐴 − 𝐶 ) / 𝑀 ) ) + ( 𝐵 · ( ∗ ‘ ( ( 𝐵 − 𝐷 ) / 𝑀 ) ) ) ) ) |
| 271 |
261 270
|
eqtrd |
⊢ ( 𝜑 → ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝐴 − 𝐶 ) ) + ( 𝐵 · ( ∗ ‘ ( 𝐵 − 𝐷 ) ) ) ) / 𝑀 ) = ( ( ( ∗ ‘ 𝐴 ) · ( ( 𝐴 − 𝐶 ) / 𝑀 ) ) + ( 𝐵 · ( ∗ ‘ ( ( 𝐵 − 𝐷 ) / 𝑀 ) ) ) ) ) |
| 272 |
271
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝑋 / 𝑀 ) − ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝐴 − 𝐶 ) ) + ( 𝐵 · ( ∗ ‘ ( 𝐵 − 𝐷 ) ) ) ) / 𝑀 ) ) = ( ( 𝑋 / 𝑀 ) − ( ( ( ∗ ‘ 𝐴 ) · ( ( 𝐴 − 𝐶 ) / 𝑀 ) ) + ( 𝐵 · ( ∗ ‘ ( ( 𝐵 − 𝐷 ) / 𝑀 ) ) ) ) ) ) |
| 273 |
253 260 272
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) + ( 𝐵 · ( ∗ ‘ 𝐷 ) ) ) / 𝑀 ) = ( ( 𝑋 / 𝑀 ) − ( ( ( ∗ ‘ 𝐴 ) · ( ( 𝐴 − 𝐶 ) / 𝑀 ) ) + ( 𝐵 · ( ∗ ‘ ( ( 𝐵 − 𝐷 ) / 𝑀 ) ) ) ) ) ) |
| 274 |
11
|
nn0zd |
⊢ ( 𝜑 → ( 𝑋 / 𝑀 ) ∈ ℤ ) |
| 275 |
|
zgz |
⊢ ( ( 𝑋 / 𝑀 ) ∈ ℤ → ( 𝑋 / 𝑀 ) ∈ ℤ[i] ) |
| 276 |
274 275
|
syl |
⊢ ( 𝜑 → ( 𝑋 / 𝑀 ) ∈ ℤ[i] ) |
| 277 |
|
gzcjcl |
⊢ ( 𝐴 ∈ ℤ[i] → ( ∗ ‘ 𝐴 ) ∈ ℤ[i] ) |
| 278 |
2 277
|
syl |
⊢ ( 𝜑 → ( ∗ ‘ 𝐴 ) ∈ ℤ[i] ) |
| 279 |
|
gzmulcl |
⊢ ( ( ( ∗ ‘ 𝐴 ) ∈ ℤ[i] ∧ ( ( 𝐴 − 𝐶 ) / 𝑀 ) ∈ ℤ[i] ) → ( ( ∗ ‘ 𝐴 ) · ( ( 𝐴 − 𝐶 ) / 𝑀 ) ) ∈ ℤ[i] ) |
| 280 |
278 9 279
|
syl2anc |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐴 ) · ( ( 𝐴 − 𝐶 ) / 𝑀 ) ) ∈ ℤ[i] ) |
| 281 |
|
gzcjcl |
⊢ ( ( ( 𝐵 − 𝐷 ) / 𝑀 ) ∈ ℤ[i] → ( ∗ ‘ ( ( 𝐵 − 𝐷 ) / 𝑀 ) ) ∈ ℤ[i] ) |
| 282 |
10 281
|
syl |
⊢ ( 𝜑 → ( ∗ ‘ ( ( 𝐵 − 𝐷 ) / 𝑀 ) ) ∈ ℤ[i] ) |
| 283 |
|
gzmulcl |
⊢ ( ( 𝐵 ∈ ℤ[i] ∧ ( ∗ ‘ ( ( 𝐵 − 𝐷 ) / 𝑀 ) ) ∈ ℤ[i] ) → ( 𝐵 · ( ∗ ‘ ( ( 𝐵 − 𝐷 ) / 𝑀 ) ) ) ∈ ℤ[i] ) |
| 284 |
3 282 283
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 · ( ∗ ‘ ( ( 𝐵 − 𝐷 ) / 𝑀 ) ) ) ∈ ℤ[i] ) |
| 285 |
|
gzaddcl |
⊢ ( ( ( ( ∗ ‘ 𝐴 ) · ( ( 𝐴 − 𝐶 ) / 𝑀 ) ) ∈ ℤ[i] ∧ ( 𝐵 · ( ∗ ‘ ( ( 𝐵 − 𝐷 ) / 𝑀 ) ) ) ∈ ℤ[i] ) → ( ( ( ∗ ‘ 𝐴 ) · ( ( 𝐴 − 𝐶 ) / 𝑀 ) ) + ( 𝐵 · ( ∗ ‘ ( ( 𝐵 − 𝐷 ) / 𝑀 ) ) ) ) ∈ ℤ[i] ) |
| 286 |
280 284 285
|
syl2anc |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐴 ) · ( ( 𝐴 − 𝐶 ) / 𝑀 ) ) + ( 𝐵 · ( ∗ ‘ ( ( 𝐵 − 𝐷 ) / 𝑀 ) ) ) ) ∈ ℤ[i] ) |
| 287 |
|
gzsubcl |
⊢ ( ( ( 𝑋 / 𝑀 ) ∈ ℤ[i] ∧ ( ( ( ∗ ‘ 𝐴 ) · ( ( 𝐴 − 𝐶 ) / 𝑀 ) ) + ( 𝐵 · ( ∗ ‘ ( ( 𝐵 − 𝐷 ) / 𝑀 ) ) ) ) ∈ ℤ[i] ) → ( ( 𝑋 / 𝑀 ) − ( ( ( ∗ ‘ 𝐴 ) · ( ( 𝐴 − 𝐶 ) / 𝑀 ) ) + ( 𝐵 · ( ∗ ‘ ( ( 𝐵 − 𝐷 ) / 𝑀 ) ) ) ) ) ∈ ℤ[i] ) |
| 288 |
276 286 287
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑋 / 𝑀 ) − ( ( ( ∗ ‘ 𝐴 ) · ( ( 𝐴 − 𝐶 ) / 𝑀 ) ) + ( 𝐵 · ( ∗ ‘ ( ( 𝐵 − 𝐷 ) / 𝑀 ) ) ) ) ) ∈ ℤ[i] ) |
| 289 |
273 288
|
eqeltrd |
⊢ ( 𝜑 → ( ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) + ( 𝐵 · ( ∗ ‘ 𝐷 ) ) ) / 𝑀 ) ∈ ℤ[i] ) |
| 290 |
254
|
cjcld |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝐴 − 𝐶 ) ) ∈ ℂ ) |
| 291 |
22 290
|
mulcld |
⊢ ( 𝜑 → ( 𝐵 · ( ∗ ‘ ( 𝐴 − 𝐶 ) ) ) ∈ ℂ ) |
| 292 |
31 256
|
mulcld |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐴 ) · ( 𝐵 − 𝐷 ) ) ∈ ℂ ) |
| 293 |
291 292 195 196
|
divsubdird |
⊢ ( 𝜑 → ( ( ( 𝐵 · ( ∗ ‘ ( 𝐴 − 𝐶 ) ) ) − ( ( ∗ ‘ 𝐴 ) · ( 𝐵 − 𝐷 ) ) ) / 𝑀 ) = ( ( ( 𝐵 · ( ∗ ‘ ( 𝐴 − 𝐶 ) ) ) / 𝑀 ) − ( ( ( ∗ ‘ 𝐴 ) · ( 𝐵 − 𝐷 ) ) / 𝑀 ) ) ) |
| 294 |
|
cjsub |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ∗ ‘ ( 𝐴 − 𝐶 ) ) = ( ( ∗ ‘ 𝐴 ) − ( ∗ ‘ 𝐶 ) ) ) |
| 295 |
13 15 294
|
syl2anc |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝐴 − 𝐶 ) ) = ( ( ∗ ‘ 𝐴 ) − ( ∗ ‘ 𝐶 ) ) ) |
| 296 |
295
|
oveq2d |
⊢ ( 𝜑 → ( 𝐵 · ( ∗ ‘ ( 𝐴 − 𝐶 ) ) ) = ( 𝐵 · ( ( ∗ ‘ 𝐴 ) − ( ∗ ‘ 𝐶 ) ) ) ) |
| 297 |
22 31 36
|
subdid |
⊢ ( 𝜑 → ( 𝐵 · ( ( ∗ ‘ 𝐴 ) − ( ∗ ‘ 𝐶 ) ) ) = ( ( 𝐵 · ( ∗ ‘ 𝐴 ) ) − ( 𝐵 · ( ∗ ‘ 𝐶 ) ) ) ) |
| 298 |
296 297
|
eqtrd |
⊢ ( 𝜑 → ( 𝐵 · ( ∗ ‘ ( 𝐴 − 𝐶 ) ) ) = ( ( 𝐵 · ( ∗ ‘ 𝐴 ) ) − ( 𝐵 · ( ∗ ‘ 𝐶 ) ) ) ) |
| 299 |
31 22 24
|
subdid |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐴 ) · ( 𝐵 − 𝐷 ) ) = ( ( ( ∗ ‘ 𝐴 ) · 𝐵 ) − ( ( ∗ ‘ 𝐴 ) · 𝐷 ) ) ) |
| 300 |
31 22
|
mulcomd |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐴 ) · 𝐵 ) = ( 𝐵 · ( ∗ ‘ 𝐴 ) ) ) |
| 301 |
300
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐴 ) · 𝐵 ) − ( ( ∗ ‘ 𝐴 ) · 𝐷 ) ) = ( ( 𝐵 · ( ∗ ‘ 𝐴 ) ) − ( ( ∗ ‘ 𝐴 ) · 𝐷 ) ) ) |
| 302 |
299 301
|
eqtrd |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐴 ) · ( 𝐵 − 𝐷 ) ) = ( ( 𝐵 · ( ∗ ‘ 𝐴 ) ) − ( ( ∗ ‘ 𝐴 ) · 𝐷 ) ) ) |
| 303 |
298 302
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐵 · ( ∗ ‘ ( 𝐴 − 𝐶 ) ) ) − ( ( ∗ ‘ 𝐴 ) · ( 𝐵 − 𝐷 ) ) ) = ( ( ( 𝐵 · ( ∗ ‘ 𝐴 ) ) − ( 𝐵 · ( ∗ ‘ 𝐶 ) ) ) − ( ( 𝐵 · ( ∗ ‘ 𝐴 ) ) − ( ( ∗ ‘ 𝐴 ) · 𝐷 ) ) ) ) |
| 304 |
22 31
|
mulcld |
⊢ ( 𝜑 → ( 𝐵 · ( ∗ ‘ 𝐴 ) ) ∈ ℂ ) |
| 305 |
304 37 105
|
nnncan1d |
⊢ ( 𝜑 → ( ( ( 𝐵 · ( ∗ ‘ 𝐴 ) ) − ( 𝐵 · ( ∗ ‘ 𝐶 ) ) ) − ( ( 𝐵 · ( ∗ ‘ 𝐴 ) ) − ( ( ∗ ‘ 𝐴 ) · 𝐷 ) ) ) = ( ( ( ∗ ‘ 𝐴 ) · 𝐷 ) − ( 𝐵 · ( ∗ ‘ 𝐶 ) ) ) ) |
| 306 |
303 305
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐵 · ( ∗ ‘ ( 𝐴 − 𝐶 ) ) ) − ( ( ∗ ‘ 𝐴 ) · ( 𝐵 − 𝐷 ) ) ) = ( ( ( ∗ ‘ 𝐴 ) · 𝐷 ) − ( 𝐵 · ( ∗ ‘ 𝐶 ) ) ) ) |
| 307 |
306
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐵 · ( ∗ ‘ ( 𝐴 − 𝐶 ) ) ) − ( ( ∗ ‘ 𝐴 ) · ( 𝐵 − 𝐷 ) ) ) / 𝑀 ) = ( ( ( ( ∗ ‘ 𝐴 ) · 𝐷 ) − ( 𝐵 · ( ∗ ‘ 𝐶 ) ) ) / 𝑀 ) ) |
| 308 |
293 307
|
eqtr3d |
⊢ ( 𝜑 → ( ( ( 𝐵 · ( ∗ ‘ ( 𝐴 − 𝐶 ) ) ) / 𝑀 ) − ( ( ( ∗ ‘ 𝐴 ) · ( 𝐵 − 𝐷 ) ) / 𝑀 ) ) = ( ( ( ( ∗ ‘ 𝐴 ) · 𝐷 ) − ( 𝐵 · ( ∗ ‘ 𝐶 ) ) ) / 𝑀 ) ) |
| 309 |
22 290 195 196
|
divassd |
⊢ ( 𝜑 → ( ( 𝐵 · ( ∗ ‘ ( 𝐴 − 𝐶 ) ) ) / 𝑀 ) = ( 𝐵 · ( ( ∗ ‘ ( 𝐴 − 𝐶 ) ) / 𝑀 ) ) ) |
| 310 |
254 195 196
|
cjdivd |
⊢ ( 𝜑 → ( ∗ ‘ ( ( 𝐴 − 𝐶 ) / 𝑀 ) ) = ( ( ∗ ‘ ( 𝐴 − 𝐶 ) ) / ( ∗ ‘ 𝑀 ) ) ) |
| 311 |
265
|
oveq2d |
⊢ ( 𝜑 → ( ( ∗ ‘ ( 𝐴 − 𝐶 ) ) / ( ∗ ‘ 𝑀 ) ) = ( ( ∗ ‘ ( 𝐴 − 𝐶 ) ) / 𝑀 ) ) |
| 312 |
310 311
|
eqtrd |
⊢ ( 𝜑 → ( ∗ ‘ ( ( 𝐴 − 𝐶 ) / 𝑀 ) ) = ( ( ∗ ‘ ( 𝐴 − 𝐶 ) ) / 𝑀 ) ) |
| 313 |
312
|
oveq2d |
⊢ ( 𝜑 → ( 𝐵 · ( ∗ ‘ ( ( 𝐴 − 𝐶 ) / 𝑀 ) ) ) = ( 𝐵 · ( ( ∗ ‘ ( 𝐴 − 𝐶 ) ) / 𝑀 ) ) ) |
| 314 |
309 313
|
eqtr4d |
⊢ ( 𝜑 → ( ( 𝐵 · ( ∗ ‘ ( 𝐴 − 𝐶 ) ) ) / 𝑀 ) = ( 𝐵 · ( ∗ ‘ ( ( 𝐴 − 𝐶 ) / 𝑀 ) ) ) ) |
| 315 |
31 256 195 196
|
divassd |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐴 ) · ( 𝐵 − 𝐷 ) ) / 𝑀 ) = ( ( ∗ ‘ 𝐴 ) · ( ( 𝐵 − 𝐷 ) / 𝑀 ) ) ) |
| 316 |
314 315
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝐵 · ( ∗ ‘ ( 𝐴 − 𝐶 ) ) ) / 𝑀 ) − ( ( ( ∗ ‘ 𝐴 ) · ( 𝐵 − 𝐷 ) ) / 𝑀 ) ) = ( ( 𝐵 · ( ∗ ‘ ( ( 𝐴 − 𝐶 ) / 𝑀 ) ) ) − ( ( ∗ ‘ 𝐴 ) · ( ( 𝐵 − 𝐷 ) / 𝑀 ) ) ) ) |
| 317 |
308 316
|
eqtr3d |
⊢ ( 𝜑 → ( ( ( ( ∗ ‘ 𝐴 ) · 𝐷 ) − ( 𝐵 · ( ∗ ‘ 𝐶 ) ) ) / 𝑀 ) = ( ( 𝐵 · ( ∗ ‘ ( ( 𝐴 − 𝐶 ) / 𝑀 ) ) ) − ( ( ∗ ‘ 𝐴 ) · ( ( 𝐵 − 𝐷 ) / 𝑀 ) ) ) ) |
| 318 |
|
gzcjcl |
⊢ ( ( ( 𝐴 − 𝐶 ) / 𝑀 ) ∈ ℤ[i] → ( ∗ ‘ ( ( 𝐴 − 𝐶 ) / 𝑀 ) ) ∈ ℤ[i] ) |
| 319 |
9 318
|
syl |
⊢ ( 𝜑 → ( ∗ ‘ ( ( 𝐴 − 𝐶 ) / 𝑀 ) ) ∈ ℤ[i] ) |
| 320 |
|
gzmulcl |
⊢ ( ( 𝐵 ∈ ℤ[i] ∧ ( ∗ ‘ ( ( 𝐴 − 𝐶 ) / 𝑀 ) ) ∈ ℤ[i] ) → ( 𝐵 · ( ∗ ‘ ( ( 𝐴 − 𝐶 ) / 𝑀 ) ) ) ∈ ℤ[i] ) |
| 321 |
3 319 320
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 · ( ∗ ‘ ( ( 𝐴 − 𝐶 ) / 𝑀 ) ) ) ∈ ℤ[i] ) |
| 322 |
|
gzmulcl |
⊢ ( ( ( ∗ ‘ 𝐴 ) ∈ ℤ[i] ∧ ( ( 𝐵 − 𝐷 ) / 𝑀 ) ∈ ℤ[i] ) → ( ( ∗ ‘ 𝐴 ) · ( ( 𝐵 − 𝐷 ) / 𝑀 ) ) ∈ ℤ[i] ) |
| 323 |
278 10 322
|
syl2anc |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐴 ) · ( ( 𝐵 − 𝐷 ) / 𝑀 ) ) ∈ ℤ[i] ) |
| 324 |
|
gzsubcl |
⊢ ( ( ( 𝐵 · ( ∗ ‘ ( ( 𝐴 − 𝐶 ) / 𝑀 ) ) ) ∈ ℤ[i] ∧ ( ( ∗ ‘ 𝐴 ) · ( ( 𝐵 − 𝐷 ) / 𝑀 ) ) ∈ ℤ[i] ) → ( ( 𝐵 · ( ∗ ‘ ( ( 𝐴 − 𝐶 ) / 𝑀 ) ) ) − ( ( ∗ ‘ 𝐴 ) · ( ( 𝐵 − 𝐷 ) / 𝑀 ) ) ) ∈ ℤ[i] ) |
| 325 |
321 323 324
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐵 · ( ∗ ‘ ( ( 𝐴 − 𝐶 ) / 𝑀 ) ) ) − ( ( ∗ ‘ 𝐴 ) · ( ( 𝐵 − 𝐷 ) / 𝑀 ) ) ) ∈ ℤ[i] ) |
| 326 |
317 325
|
eqeltrd |
⊢ ( 𝜑 → ( ( ( ( ∗ ‘ 𝐴 ) · 𝐷 ) − ( 𝐵 · ( ∗ ‘ 𝐶 ) ) ) / 𝑀 ) ∈ ℤ[i] ) |
| 327 |
1
|
4sqlem4a |
⊢ ( ( ( ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) + ( 𝐵 · ( ∗ ‘ 𝐷 ) ) ) / 𝑀 ) ∈ ℤ[i] ∧ ( ( ( ( ∗ ‘ 𝐴 ) · 𝐷 ) − ( 𝐵 · ( ∗ ‘ 𝐶 ) ) ) / 𝑀 ) ∈ ℤ[i] ) → ( ( ( abs ‘ ( ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) + ( 𝐵 · ( ∗ ‘ 𝐷 ) ) ) / 𝑀 ) ) ↑ 2 ) + ( ( abs ‘ ( ( ( ( ∗ ‘ 𝐴 ) · 𝐷 ) − ( 𝐵 · ( ∗ ‘ 𝐶 ) ) ) / 𝑀 ) ) ↑ 2 ) ) ∈ 𝑆 ) |
| 328 |
289 326 327
|
syl2anc |
⊢ ( 𝜑 → ( ( ( abs ‘ ( ( ( ( ∗ ‘ 𝐴 ) · 𝐶 ) + ( 𝐵 · ( ∗ ‘ 𝐷 ) ) ) / 𝑀 ) ) ↑ 2 ) + ( ( abs ‘ ( ( ( ( ∗ ‘ 𝐴 ) · 𝐷 ) − ( 𝐵 · ( ∗ ‘ 𝐶 ) ) ) / 𝑀 ) ) ↑ 2 ) ) ∈ 𝑆 ) |
| 329 |
236 328
|
eqeltrrd |
⊢ ( 𝜑 → ( ( 𝑋 / 𝑀 ) · ( 𝑌 / 𝑀 ) ) ∈ 𝑆 ) |