| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							n0 | 
							 |-  ( A =/= (/) <-> E. x x e. A )  | 
						
						
							| 2 | 
							
								
							 | 
							ssel | 
							 |-  ( A C_ RR -> ( x e. A -> x e. RR ) )  | 
						
						
							| 3 | 
							
								
							 | 
							renegcl | 
							 |-  ( x e. RR -> -u x e. RR )  | 
						
						
							| 4 | 
							
								
							 | 
							negeq | 
							 |-  ( z = -u x -> -u z = -u -u x )  | 
						
						
							| 5 | 
							
								4
							 | 
							eleq1d | 
							 |-  ( z = -u x -> ( -u z e. A <-> -u -u x e. A ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							elrab3 | 
							 |-  ( -u x e. RR -> ( -u x e. { z e. RR | -u z e. A } <-> -u -u x e. A ) ) | 
						
						
							| 7 | 
							
								3 6
							 | 
							syl | 
							 |-  ( x e. RR -> ( -u x e. { z e. RR | -u z e. A } <-> -u -u x e. A ) ) | 
						
						
							| 8 | 
							
								
							 | 
							recn | 
							 |-  ( x e. RR -> x e. CC )  | 
						
						
							| 9 | 
							
								8
							 | 
							negnegd | 
							 |-  ( x e. RR -> -u -u x = x )  | 
						
						
							| 10 | 
							
								9
							 | 
							eleq1d | 
							 |-  ( x e. RR -> ( -u -u x e. A <-> x e. A ) )  | 
						
						
							| 11 | 
							
								7 10
							 | 
							bitrd | 
							 |-  ( x e. RR -> ( -u x e. { z e. RR | -u z e. A } <-> x e. A ) ) | 
						
						
							| 12 | 
							
								11
							 | 
							biimprd | 
							 |-  ( x e. RR -> ( x e. A -> -u x e. { z e. RR | -u z e. A } ) ) | 
						
						
							| 13 | 
							
								2 12
							 | 
							syli | 
							 |-  ( A C_ RR -> ( x e. A -> -u x e. { z e. RR | -u z e. A } ) ) | 
						
						
							| 14 | 
							
								
							 | 
							elex2 | 
							 |-  ( -u x e. { z e. RR | -u z e. A } -> E. y y e. { z e. RR | -u z e. A } ) | 
						
						
							| 15 | 
							
								13 14
							 | 
							syl6 | 
							 |-  ( A C_ RR -> ( x e. A -> E. y y e. { z e. RR | -u z e. A } ) ) | 
						
						
							| 16 | 
							
								
							 | 
							n0 | 
							 |-  ( { z e. RR | -u z e. A } =/= (/) <-> E. y y e. { z e. RR | -u z e. A } ) | 
						
						
							| 17 | 
							
								15 16
							 | 
							imbitrrdi | 
							 |-  ( A C_ RR -> ( x e. A -> { z e. RR | -u z e. A } =/= (/) ) ) | 
						
						
							| 18 | 
							
								17
							 | 
							exlimdv | 
							 |-  ( A C_ RR -> ( E. x x e. A -> { z e. RR | -u z e. A } =/= (/) ) ) | 
						
						
							| 19 | 
							
								1 18
							 | 
							biimtrid | 
							 |-  ( A C_ RR -> ( A =/= (/) -> { z e. RR | -u z e. A } =/= (/) ) ) | 
						
						
							| 20 | 
							
								19
							 | 
							imp | 
							 |-  ( ( A C_ RR /\ A =/= (/) ) -> { z e. RR | -u z e. A } =/= (/) ) |