Metamath Proof Explorer


Theorem negn0

Description: The image under negation of a nonempty set of reals is nonempty. (Contributed by Paul Chapman, 21-Mar-2011)

Ref Expression
Assertion negn0 A A z | z A

Proof

Step Hyp Ref Expression
1 n0 A x x A
2 ssel A x A x
3 renegcl x x
4 negeq z = x z = x
5 4 eleq1d z = x z A x A
6 5 elrab3 x x z | z A x A
7 3 6 syl x x z | z A x A
8 recn x x
9 8 negnegd x x = x
10 9 eleq1d x x A x A
11 7 10 bitrd x x z | z A x A
12 11 biimprd x x A x z | z A
13 2 12 syli A x A x z | z A
14 elex2 x z | z A y y z | z A
15 13 14 syl6 A x A y y z | z A
16 n0 z | z A y y z | z A
17 15 16 syl6ibr A x A z | z A
18 17 exlimdv A x x A z | z A
19 1 18 syl5bi A A z | z A
20 19 imp A A z | z A