Metamath Proof Explorer


Theorem negn0

Description: The image under negation of a nonempty set of reals is nonempty. (Contributed by Paul Chapman, 21-Mar-2011)

Ref Expression
Assertion negn0 AAz|zA

Proof

Step Hyp Ref Expression
1 n0 AxxA
2 ssel AxAx
3 renegcl xx
4 negeq z=xz=x
5 4 eleq1d z=xzAxA
6 5 elrab3 xxz|zAxA
7 3 6 syl xxz|zAxA
8 recn xx
9 8 negnegd xx=x
10 9 eleq1d xxAxA
11 7 10 bitrd xxz|zAxA
12 11 biimprd xxAxz|zA
13 2 12 syli AxAxz|zA
14 elex2 xz|zAyyz|zA
15 13 14 syl6 AxAyyz|zA
16 n0 z|zAyyz|zA
17 15 16 imbitrrdi AxAz|zA
18 17 exlimdv AxxAz|zA
19 1 18 biimtrid AAz|zA
20 19 imp AAz|zA