Step |
Hyp |
Ref |
Expression |
1 |
|
nmofval.1 |
|- N = ( S normOp T ) |
2 |
|
nmoi.2 |
|- V = ( Base ` S ) |
3 |
|
nmoi.3 |
|- L = ( norm ` S ) |
4 |
|
nmoi.4 |
|- M = ( norm ` T ) |
5 |
|
nmoi2.z |
|- .0. = ( 0g ` S ) |
6 |
|
simpl2 |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( X e. V /\ X =/= .0. ) ) -> T e. NrmGrp ) |
7 |
|
simpl3 |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( X e. V /\ X =/= .0. ) ) -> F e. ( S GrpHom T ) ) |
8 |
|
eqid |
|- ( Base ` T ) = ( Base ` T ) |
9 |
2 8
|
ghmf |
|- ( F e. ( S GrpHom T ) -> F : V --> ( Base ` T ) ) |
10 |
7 9
|
syl |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( X e. V /\ X =/= .0. ) ) -> F : V --> ( Base ` T ) ) |
11 |
|
simprl |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( X e. V /\ X =/= .0. ) ) -> X e. V ) |
12 |
10 11
|
ffvelrnd |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( X e. V /\ X =/= .0. ) ) -> ( F ` X ) e. ( Base ` T ) ) |
13 |
8 4
|
nmcl |
|- ( ( T e. NrmGrp /\ ( F ` X ) e. ( Base ` T ) ) -> ( M ` ( F ` X ) ) e. RR ) |
14 |
6 12 13
|
syl2anc |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( X e. V /\ X =/= .0. ) ) -> ( M ` ( F ` X ) ) e. RR ) |
15 |
14
|
rexrd |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( X e. V /\ X =/= .0. ) ) -> ( M ` ( F ` X ) ) e. RR* ) |
16 |
1
|
nmocl |
|- ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) -> ( N ` F ) e. RR* ) |
17 |
16
|
adantr |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( X e. V /\ X =/= .0. ) ) -> ( N ` F ) e. RR* ) |
18 |
2 3 5
|
nmrpcl |
|- ( ( S e. NrmGrp /\ X e. V /\ X =/= .0. ) -> ( L ` X ) e. RR+ ) |
19 |
18
|
3expb |
|- ( ( S e. NrmGrp /\ ( X e. V /\ X =/= .0. ) ) -> ( L ` X ) e. RR+ ) |
20 |
19
|
3ad2antl1 |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( X e. V /\ X =/= .0. ) ) -> ( L ` X ) e. RR+ ) |
21 |
20
|
rpxrd |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( X e. V /\ X =/= .0. ) ) -> ( L ` X ) e. RR* ) |
22 |
17 21
|
xmulcld |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( X e. V /\ X =/= .0. ) ) -> ( ( N ` F ) *e ( L ` X ) ) e. RR* ) |
23 |
20
|
rpreccld |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( X e. V /\ X =/= .0. ) ) -> ( 1 / ( L ` X ) ) e. RR+ ) |
24 |
23
|
rpxrd |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( X e. V /\ X =/= .0. ) ) -> ( 1 / ( L ` X ) ) e. RR* ) |
25 |
23
|
rpge0d |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( X e. V /\ X =/= .0. ) ) -> 0 <_ ( 1 / ( L ` X ) ) ) |
26 |
24 25
|
jca |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( X e. V /\ X =/= .0. ) ) -> ( ( 1 / ( L ` X ) ) e. RR* /\ 0 <_ ( 1 / ( L ` X ) ) ) ) |
27 |
1 2 3 4
|
nmoix |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ X e. V ) -> ( M ` ( F ` X ) ) <_ ( ( N ` F ) *e ( L ` X ) ) ) |
28 |
27
|
adantrr |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( X e. V /\ X =/= .0. ) ) -> ( M ` ( F ` X ) ) <_ ( ( N ` F ) *e ( L ` X ) ) ) |
29 |
|
xlemul1a |
|- ( ( ( ( M ` ( F ` X ) ) e. RR* /\ ( ( N ` F ) *e ( L ` X ) ) e. RR* /\ ( ( 1 / ( L ` X ) ) e. RR* /\ 0 <_ ( 1 / ( L ` X ) ) ) ) /\ ( M ` ( F ` X ) ) <_ ( ( N ` F ) *e ( L ` X ) ) ) -> ( ( M ` ( F ` X ) ) *e ( 1 / ( L ` X ) ) ) <_ ( ( ( N ` F ) *e ( L ` X ) ) *e ( 1 / ( L ` X ) ) ) ) |
30 |
15 22 26 28 29
|
syl31anc |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( X e. V /\ X =/= .0. ) ) -> ( ( M ` ( F ` X ) ) *e ( 1 / ( L ` X ) ) ) <_ ( ( ( N ` F ) *e ( L ` X ) ) *e ( 1 / ( L ` X ) ) ) ) |
31 |
23
|
rpred |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( X e. V /\ X =/= .0. ) ) -> ( 1 / ( L ` X ) ) e. RR ) |
32 |
|
rexmul |
|- ( ( ( M ` ( F ` X ) ) e. RR /\ ( 1 / ( L ` X ) ) e. RR ) -> ( ( M ` ( F ` X ) ) *e ( 1 / ( L ` X ) ) ) = ( ( M ` ( F ` X ) ) x. ( 1 / ( L ` X ) ) ) ) |
33 |
14 31 32
|
syl2anc |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( X e. V /\ X =/= .0. ) ) -> ( ( M ` ( F ` X ) ) *e ( 1 / ( L ` X ) ) ) = ( ( M ` ( F ` X ) ) x. ( 1 / ( L ` X ) ) ) ) |
34 |
14
|
recnd |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( X e. V /\ X =/= .0. ) ) -> ( M ` ( F ` X ) ) e. CC ) |
35 |
20
|
rpcnd |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( X e. V /\ X =/= .0. ) ) -> ( L ` X ) e. CC ) |
36 |
20
|
rpne0d |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( X e. V /\ X =/= .0. ) ) -> ( L ` X ) =/= 0 ) |
37 |
34 35 36
|
divrecd |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( X e. V /\ X =/= .0. ) ) -> ( ( M ` ( F ` X ) ) / ( L ` X ) ) = ( ( M ` ( F ` X ) ) x. ( 1 / ( L ` X ) ) ) ) |
38 |
33 37
|
eqtr4d |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( X e. V /\ X =/= .0. ) ) -> ( ( M ` ( F ` X ) ) *e ( 1 / ( L ` X ) ) ) = ( ( M ` ( F ` X ) ) / ( L ` X ) ) ) |
39 |
|
xmulass |
|- ( ( ( N ` F ) e. RR* /\ ( L ` X ) e. RR* /\ ( 1 / ( L ` X ) ) e. RR* ) -> ( ( ( N ` F ) *e ( L ` X ) ) *e ( 1 / ( L ` X ) ) ) = ( ( N ` F ) *e ( ( L ` X ) *e ( 1 / ( L ` X ) ) ) ) ) |
40 |
17 21 24 39
|
syl3anc |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( X e. V /\ X =/= .0. ) ) -> ( ( ( N ` F ) *e ( L ` X ) ) *e ( 1 / ( L ` X ) ) ) = ( ( N ` F ) *e ( ( L ` X ) *e ( 1 / ( L ` X ) ) ) ) ) |
41 |
20
|
rpred |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( X e. V /\ X =/= .0. ) ) -> ( L ` X ) e. RR ) |
42 |
|
rexmul |
|- ( ( ( L ` X ) e. RR /\ ( 1 / ( L ` X ) ) e. RR ) -> ( ( L ` X ) *e ( 1 / ( L ` X ) ) ) = ( ( L ` X ) x. ( 1 / ( L ` X ) ) ) ) |
43 |
41 31 42
|
syl2anc |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( X e. V /\ X =/= .0. ) ) -> ( ( L ` X ) *e ( 1 / ( L ` X ) ) ) = ( ( L ` X ) x. ( 1 / ( L ` X ) ) ) ) |
44 |
35 36
|
recidd |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( X e. V /\ X =/= .0. ) ) -> ( ( L ` X ) x. ( 1 / ( L ` X ) ) ) = 1 ) |
45 |
43 44
|
eqtrd |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( X e. V /\ X =/= .0. ) ) -> ( ( L ` X ) *e ( 1 / ( L ` X ) ) ) = 1 ) |
46 |
45
|
oveq2d |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( X e. V /\ X =/= .0. ) ) -> ( ( N ` F ) *e ( ( L ` X ) *e ( 1 / ( L ` X ) ) ) ) = ( ( N ` F ) *e 1 ) ) |
47 |
|
xmulid1 |
|- ( ( N ` F ) e. RR* -> ( ( N ` F ) *e 1 ) = ( N ` F ) ) |
48 |
17 47
|
syl |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( X e. V /\ X =/= .0. ) ) -> ( ( N ` F ) *e 1 ) = ( N ` F ) ) |
49 |
40 46 48
|
3eqtrd |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( X e. V /\ X =/= .0. ) ) -> ( ( ( N ` F ) *e ( L ` X ) ) *e ( 1 / ( L ` X ) ) ) = ( N ` F ) ) |
50 |
30 38 49
|
3brtr3d |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( X e. V /\ X =/= .0. ) ) -> ( ( M ` ( F ` X ) ) / ( L ` X ) ) <_ ( N ` F ) ) |