| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nmofval.1 |  | 
						
							| 2 |  | nmoi.2 |  | 
						
							| 3 |  | nmoi.3 |  | 
						
							| 4 |  | nmoi.4 |  | 
						
							| 5 |  | nmoi2.z |  | 
						
							| 6 |  | simpl2 |  | 
						
							| 7 |  | simpl3 |  | 
						
							| 8 |  | eqid |  | 
						
							| 9 | 2 8 | ghmf |  | 
						
							| 10 | 7 9 | syl |  | 
						
							| 11 |  | simprl |  | 
						
							| 12 | 10 11 | ffvelcdmd |  | 
						
							| 13 | 8 4 | nmcl |  | 
						
							| 14 | 6 12 13 | syl2anc |  | 
						
							| 15 | 14 | rexrd |  | 
						
							| 16 | 1 | nmocl |  | 
						
							| 17 | 16 | adantr |  | 
						
							| 18 | 2 3 5 | nmrpcl |  | 
						
							| 19 | 18 | 3expb |  | 
						
							| 20 | 19 | 3ad2antl1 |  | 
						
							| 21 | 20 | rpxrd |  | 
						
							| 22 | 17 21 | xmulcld |  | 
						
							| 23 | 20 | rpreccld |  | 
						
							| 24 | 23 | rpxrd |  | 
						
							| 25 | 23 | rpge0d |  | 
						
							| 26 | 24 25 | jca |  | 
						
							| 27 | 1 2 3 4 | nmoix |  | 
						
							| 28 | 27 | adantrr |  | 
						
							| 29 |  | xlemul1a |  | 
						
							| 30 | 15 22 26 28 29 | syl31anc |  | 
						
							| 31 | 23 | rpred |  | 
						
							| 32 |  | rexmul |  | 
						
							| 33 | 14 31 32 | syl2anc |  | 
						
							| 34 | 14 | recnd |  | 
						
							| 35 | 20 | rpcnd |  | 
						
							| 36 | 20 | rpne0d |  | 
						
							| 37 | 34 35 36 | divrecd |  | 
						
							| 38 | 33 37 | eqtr4d |  | 
						
							| 39 |  | xmulass |  | 
						
							| 40 | 17 21 24 39 | syl3anc |  | 
						
							| 41 | 20 | rpred |  | 
						
							| 42 |  | rexmul |  | 
						
							| 43 | 41 31 42 | syl2anc |  | 
						
							| 44 | 35 36 | recidd |  | 
						
							| 45 | 43 44 | eqtrd |  | 
						
							| 46 | 45 | oveq2d |  | 
						
							| 47 |  | xmulrid |  | 
						
							| 48 | 17 47 | syl |  | 
						
							| 49 | 40 46 48 | 3eqtrd |  | 
						
							| 50 | 30 38 49 | 3brtr3d |  |