Metamath Proof Explorer


Theorem nmoleub

Description: The operator norm, defined as an infimum of upper bounds, can also be defined as a supremum of norms of F ( x ) away from zero. (Contributed by Mario Carneiro, 18-Oct-2015)

Ref Expression
Hypotheses nmofval.1 N = S normOp T
nmoi.2 V = Base S
nmoi.3 L = norm S
nmoi.4 M = norm T
nmoi2.z 0 ˙ = 0 S
nmoleub.1 φ S NrmGrp
nmoleub.2 φ T NrmGrp
nmoleub.3 φ F S GrpHom T
nmoleub.4 φ A *
nmoleub.5 φ 0 A
Assertion nmoleub φ N F A x V x 0 ˙ M F x L x A

Proof

Step Hyp Ref Expression
1 nmofval.1 N = S normOp T
2 nmoi.2 V = Base S
3 nmoi.3 L = norm S
4 nmoi.4 M = norm T
5 nmoi2.z 0 ˙ = 0 S
6 nmoleub.1 φ S NrmGrp
7 nmoleub.2 φ T NrmGrp
8 nmoleub.3 φ F S GrpHom T
9 nmoleub.4 φ A *
10 nmoleub.5 φ 0 A
11 7 ad2antrr φ N F A x V x 0 ˙ T NrmGrp
12 eqid Base T = Base T
13 2 12 ghmf F S GrpHom T F : V Base T
14 8 13 syl φ F : V Base T
15 14 ad2antrr φ N F A x V x 0 ˙ F : V Base T
16 simprl φ N F A x V x 0 ˙ x V
17 ffvelrn F : V Base T x V F x Base T
18 15 16 17 syl2anc φ N F A x V x 0 ˙ F x Base T
19 12 4 nmcl T NrmGrp F x Base T M F x
20 11 18 19 syl2anc φ N F A x V x 0 ˙ M F x
21 6 adantr φ N F A S NrmGrp
22 2 3 5 nmrpcl S NrmGrp x V x 0 ˙ L x +
23 22 3expb S NrmGrp x V x 0 ˙ L x +
24 21 23 sylan φ N F A x V x 0 ˙ L x +
25 20 24 rerpdivcld φ N F A x V x 0 ˙ M F x L x
26 25 rexrd φ N F A x V x 0 ˙ M F x L x *
27 1 nmocl S NrmGrp T NrmGrp F S GrpHom T N F *
28 6 7 8 27 syl3anc φ N F *
29 28 ad2antrr φ N F A x V x 0 ˙ N F *
30 9 ad2antrr φ N F A x V x 0 ˙ A *
31 6 7 8 3jca φ S NrmGrp T NrmGrp F S GrpHom T
32 31 adantr φ N F A S NrmGrp T NrmGrp F S GrpHom T
33 1 2 3 4 5 nmoi2 S NrmGrp T NrmGrp F S GrpHom T x V x 0 ˙ M F x L x N F
34 32 33 sylan φ N F A x V x 0 ˙ M F x L x N F
35 simplr φ N F A x V x 0 ˙ N F A
36 26 29 30 34 35 xrletrd φ N F A x V x 0 ˙ M F x L x A
37 36 expr φ N F A x V x 0 ˙ M F x L x A
38 37 ralrimiva φ N F A x V x 0 ˙ M F x L x A
39 0le0 0 0
40 simpllr φ A x V x = 0 ˙ A
41 40 recnd φ A x V x = 0 ˙ A
42 41 mul01d φ A x V x = 0 ˙ A 0 = 0
43 39 42 breqtrrid φ A x V x = 0 ˙ 0 A 0
44 fveq2 x = 0 ˙ F x = F 0 ˙
45 8 ad2antrr φ A x V F S GrpHom T
46 eqid 0 T = 0 T
47 5 46 ghmid F S GrpHom T F 0 ˙ = 0 T
48 45 47 syl φ A x V F 0 ˙ = 0 T
49 44 48 sylan9eqr φ A x V x = 0 ˙ F x = 0 T
50 49 fveq2d φ A x V x = 0 ˙ M F x = M 0 T
51 7 ad3antrrr φ A x V x = 0 ˙ T NrmGrp
52 4 46 nm0 T NrmGrp M 0 T = 0
53 51 52 syl φ A x V x = 0 ˙ M 0 T = 0
54 50 53 eqtrd φ A x V x = 0 ˙ M F x = 0
55 fveq2 x = 0 ˙ L x = L 0 ˙
56 6 ad2antrr φ A x V S NrmGrp
57 3 5 nm0 S NrmGrp L 0 ˙ = 0
58 56 57 syl φ A x V L 0 ˙ = 0
59 55 58 sylan9eqr φ A x V x = 0 ˙ L x = 0
60 59 oveq2d φ A x V x = 0 ˙ A L x = A 0
61 43 54 60 3brtr4d φ A x V x = 0 ˙ M F x A L x
62 61 a1d φ A x V x = 0 ˙ x 0 ˙ M F x L x A M F x A L x
63 simpr φ A x V x 0 ˙ x 0 ˙
64 7 ad2antrr φ A x V T NrmGrp
65 14 adantr φ A F : V Base T
66 65 17 sylan φ A x V F x Base T
67 64 66 19 syl2anc φ A x V M F x
68 67 adantr φ A x V x 0 ˙ M F x
69 simpllr φ A x V x 0 ˙ A
70 6 adantr φ A S NrmGrp
71 22 3expa S NrmGrp x V x 0 ˙ L x +
72 70 71 sylanl1 φ A x V x 0 ˙ L x +
73 68 69 72 ledivmul2d φ A x V x 0 ˙ M F x L x A M F x A L x
74 73 biimpd φ A x V x 0 ˙ M F x L x A M F x A L x
75 63 74 embantd φ A x V x 0 ˙ x 0 ˙ M F x L x A M F x A L x
76 62 75 pm2.61dane φ A x V x 0 ˙ M F x L x A M F x A L x
77 76 ralimdva φ A x V x 0 ˙ M F x L x A x V M F x A L x
78 7 adantr φ A T NrmGrp
79 8 adantr φ A F S GrpHom T
80 simpr φ A A
81 10 adantr φ A 0 A
82 1 2 3 4 nmolb S NrmGrp T NrmGrp F S GrpHom T A 0 A x V M F x A L x N F A
83 70 78 79 80 81 82 syl311anc φ A x V M F x A L x N F A
84 77 83 syld φ A x V x 0 ˙ M F x L x A N F A
85 84 imp φ A x V x 0 ˙ M F x L x A N F A
86 85 an32s φ x V x 0 ˙ M F x L x A A N F A
87 28 ad2antrr φ x V x 0 ˙ M F x L x A A = +∞ N F *
88 pnfge N F * N F +∞
89 87 88 syl φ x V x 0 ˙ M F x L x A A = +∞ N F +∞
90 simpr φ x V x 0 ˙ M F x L x A A = +∞ A = +∞
91 89 90 breqtrrd φ x V x 0 ˙ M F x L x A A = +∞ N F A
92 ge0nemnf A * 0 A A −∞
93 9 10 92 syl2anc φ A −∞
94 9 93 jca φ A * A −∞
95 xrnemnf A * A −∞ A A = +∞
96 94 95 sylib φ A A = +∞
97 96 adantr φ x V x 0 ˙ M F x L x A A A = +∞
98 86 91 97 mpjaodan φ x V x 0 ˙ M F x L x A N F A
99 38 98 impbida φ N F A x V x 0 ˙ M F x L x A