| Step | Hyp | Ref | Expression | 
						
							| 1 |  | numclwwlk.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | numclwwlk.q |  |-  Q = ( v e. V , n e. NN |-> { w e. ( n WWalksN G ) | ( ( w ` 0 ) = v /\ ( lastS ` w ) =/= v ) } ) | 
						
							| 3 |  | numclwwlk.h |  |-  H = ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) =/= v } ) | 
						
							| 4 |  | eluzelcn |  |-  ( N e. ( ZZ>= ` 3 ) -> N e. CC ) | 
						
							| 5 |  | 2cnd |  |-  ( N e. ( ZZ>= ` 3 ) -> 2 e. CC ) | 
						
							| 6 | 4 5 | npcand |  |-  ( N e. ( ZZ>= ` 3 ) -> ( ( N - 2 ) + 2 ) = N ) | 
						
							| 7 | 6 | eqcomd |  |-  ( N e. ( ZZ>= ` 3 ) -> N = ( ( N - 2 ) + 2 ) ) | 
						
							| 8 | 7 | 3ad2ant3 |  |-  ( ( V e. Fin /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> N = ( ( N - 2 ) + 2 ) ) | 
						
							| 9 | 8 | adantl |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V e. Fin /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> N = ( ( N - 2 ) + 2 ) ) | 
						
							| 10 | 9 | oveq2d |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V e. Fin /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( X H N ) = ( X H ( ( N - 2 ) + 2 ) ) ) | 
						
							| 11 | 10 | fveq2d |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V e. Fin /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( # ` ( X H N ) ) = ( # ` ( X H ( ( N - 2 ) + 2 ) ) ) ) | 
						
							| 12 |  | simplr |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V e. Fin /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> G e. FriendGraph ) | 
						
							| 13 |  | simpr2 |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V e. Fin /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> X e. V ) | 
						
							| 14 |  | uz3m2nn |  |-  ( N e. ( ZZ>= ` 3 ) -> ( N - 2 ) e. NN ) | 
						
							| 15 | 14 | 3ad2ant3 |  |-  ( ( V e. Fin /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( N - 2 ) e. NN ) | 
						
							| 16 | 15 | adantl |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V e. Fin /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( N - 2 ) e. NN ) | 
						
							| 17 | 1 2 3 | numclwwlk2lem3 |  |-  ( ( G e. FriendGraph /\ X e. V /\ ( N - 2 ) e. NN ) -> ( # ` ( X Q ( N - 2 ) ) ) = ( # ` ( X H ( ( N - 2 ) + 2 ) ) ) ) | 
						
							| 18 | 12 13 16 17 | syl3anc |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V e. Fin /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( # ` ( X Q ( N - 2 ) ) ) = ( # ` ( X H ( ( N - 2 ) + 2 ) ) ) ) | 
						
							| 19 |  | simpl |  |-  ( ( G RegUSGraph K /\ G e. FriendGraph ) -> G RegUSGraph K ) | 
						
							| 20 |  | simp1 |  |-  ( ( V e. Fin /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> V e. Fin ) | 
						
							| 21 | 19 20 | anim12i |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V e. Fin /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( G RegUSGraph K /\ V e. Fin ) ) | 
						
							| 22 | 14 | anim2i |  |-  ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( X e. V /\ ( N - 2 ) e. NN ) ) | 
						
							| 23 | 22 | 3adant1 |  |-  ( ( V e. Fin /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( X e. V /\ ( N - 2 ) e. NN ) ) | 
						
							| 24 | 23 | adantl |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V e. Fin /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( X e. V /\ ( N - 2 ) e. NN ) ) | 
						
							| 25 | 1 2 | numclwwlkqhash |  |-  ( ( ( G RegUSGraph K /\ V e. Fin ) /\ ( X e. V /\ ( N - 2 ) e. NN ) ) -> ( # ` ( X Q ( N - 2 ) ) ) = ( ( K ^ ( N - 2 ) ) - ( # ` ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) ) ) ) | 
						
							| 26 | 21 24 25 | syl2anc |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V e. Fin /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( # ` ( X Q ( N - 2 ) ) ) = ( ( K ^ ( N - 2 ) ) - ( # ` ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) ) ) ) | 
						
							| 27 | 11 18 26 | 3eqtr2d |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V e. Fin /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( # ` ( X H N ) ) = ( ( K ^ ( N - 2 ) ) - ( # ` ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) ) ) ) |