| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oddz |
|- ( N e. Odd -> N e. ZZ ) |
| 2 |
|
odd2np1ALTV |
|- ( N e. ZZ -> ( N e. Odd <-> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) |
| 3 |
1 2
|
syl |
|- ( N e. Odd -> ( N e. Odd <-> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) |
| 4 |
3
|
biimpd |
|- ( N e. Odd -> ( N e. Odd -> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) |
| 5 |
4
|
pm2.43i |
|- ( N e. Odd -> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) |
| 6 |
5
|
3ad2ant3 |
|- ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) -> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) |
| 7 |
|
simpl1 |
|- ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> A e. CC ) |
| 8 |
|
simpl2 |
|- ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> A =/= 0 ) |
| 9 |
|
2z |
|- 2 e. ZZ |
| 10 |
|
simprl |
|- ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> n e. ZZ ) |
| 11 |
|
zmulcl |
|- ( ( 2 e. ZZ /\ n e. ZZ ) -> ( 2 x. n ) e. ZZ ) |
| 12 |
9 10 11
|
sylancr |
|- ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( 2 x. n ) e. ZZ ) |
| 13 |
7 8 12
|
expclzd |
|- ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( A ^ ( 2 x. n ) ) e. CC ) |
| 14 |
13 7
|
mulneg2d |
|- ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( ( A ^ ( 2 x. n ) ) x. -u A ) = -u ( ( A ^ ( 2 x. n ) ) x. A ) ) |
| 15 |
|
sqneg |
|- ( A e. CC -> ( -u A ^ 2 ) = ( A ^ 2 ) ) |
| 16 |
7 15
|
syl |
|- ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( -u A ^ 2 ) = ( A ^ 2 ) ) |
| 17 |
16
|
oveq1d |
|- ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( ( -u A ^ 2 ) ^ n ) = ( ( A ^ 2 ) ^ n ) ) |
| 18 |
7
|
negcld |
|- ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> -u A e. CC ) |
| 19 |
7 8
|
negne0d |
|- ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> -u A =/= 0 ) |
| 20 |
9
|
a1i |
|- ( ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) -> 2 e. ZZ ) |
| 21 |
|
simpl |
|- ( ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) -> n e. ZZ ) |
| 22 |
20 21
|
jca |
|- ( ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) -> ( 2 e. ZZ /\ n e. ZZ ) ) |
| 23 |
22
|
adantl |
|- ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( 2 e. ZZ /\ n e. ZZ ) ) |
| 24 |
18 19 23
|
jca31 |
|- ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( ( -u A e. CC /\ -u A =/= 0 ) /\ ( 2 e. ZZ /\ n e. ZZ ) ) ) |
| 25 |
|
expmulz |
|- ( ( ( -u A e. CC /\ -u A =/= 0 ) /\ ( 2 e. ZZ /\ n e. ZZ ) ) -> ( -u A ^ ( 2 x. n ) ) = ( ( -u A ^ 2 ) ^ n ) ) |
| 26 |
24 25
|
syl |
|- ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( -u A ^ ( 2 x. n ) ) = ( ( -u A ^ 2 ) ^ n ) ) |
| 27 |
7 8 23
|
jca31 |
|- ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( ( A e. CC /\ A =/= 0 ) /\ ( 2 e. ZZ /\ n e. ZZ ) ) ) |
| 28 |
|
expmulz |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( 2 e. ZZ /\ n e. ZZ ) ) -> ( A ^ ( 2 x. n ) ) = ( ( A ^ 2 ) ^ n ) ) |
| 29 |
27 28
|
syl |
|- ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( A ^ ( 2 x. n ) ) = ( ( A ^ 2 ) ^ n ) ) |
| 30 |
17 26 29
|
3eqtr4d |
|- ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( -u A ^ ( 2 x. n ) ) = ( A ^ ( 2 x. n ) ) ) |
| 31 |
30
|
oveq1d |
|- ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( ( -u A ^ ( 2 x. n ) ) x. -u A ) = ( ( A ^ ( 2 x. n ) ) x. -u A ) ) |
| 32 |
18 19 12
|
expp1zd |
|- ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( -u A ^ ( ( 2 x. n ) + 1 ) ) = ( ( -u A ^ ( 2 x. n ) ) x. -u A ) ) |
| 33 |
|
simprr |
|- ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( ( 2 x. n ) + 1 ) = N ) |
| 34 |
33
|
oveq2d |
|- ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( -u A ^ ( ( 2 x. n ) + 1 ) ) = ( -u A ^ N ) ) |
| 35 |
32 34
|
eqtr3d |
|- ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( ( -u A ^ ( 2 x. n ) ) x. -u A ) = ( -u A ^ N ) ) |
| 36 |
31 35
|
eqtr3d |
|- ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( ( A ^ ( 2 x. n ) ) x. -u A ) = ( -u A ^ N ) ) |
| 37 |
14 36
|
eqtr3d |
|- ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> -u ( ( A ^ ( 2 x. n ) ) x. A ) = ( -u A ^ N ) ) |
| 38 |
7 8 12
|
expp1zd |
|- ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( A ^ ( ( 2 x. n ) + 1 ) ) = ( ( A ^ ( 2 x. n ) ) x. A ) ) |
| 39 |
33
|
oveq2d |
|- ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( A ^ ( ( 2 x. n ) + 1 ) ) = ( A ^ N ) ) |
| 40 |
38 39
|
eqtr3d |
|- ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( ( A ^ ( 2 x. n ) ) x. A ) = ( A ^ N ) ) |
| 41 |
40
|
negeqd |
|- ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> -u ( ( A ^ ( 2 x. n ) ) x. A ) = -u ( A ^ N ) ) |
| 42 |
37 41
|
eqtr3d |
|- ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( -u A ^ N ) = -u ( A ^ N ) ) |
| 43 |
6 42
|
rexlimddv |
|- ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) -> ( -u A ^ N ) = -u ( A ^ N ) ) |