Step |
Hyp |
Ref |
Expression |
1 |
|
oddz |
|- ( N e. Odd -> N e. ZZ ) |
2 |
|
odd2np1ALTV |
|- ( N e. ZZ -> ( N e. Odd <-> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) |
3 |
1 2
|
syl |
|- ( N e. Odd -> ( N e. Odd <-> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) |
4 |
3
|
biimpd |
|- ( N e. Odd -> ( N e. Odd -> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) |
5 |
4
|
pm2.43i |
|- ( N e. Odd -> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) |
6 |
5
|
3ad2ant3 |
|- ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) -> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) |
7 |
|
simpl1 |
|- ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> A e. CC ) |
8 |
|
simpl2 |
|- ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> A =/= 0 ) |
9 |
|
2z |
|- 2 e. ZZ |
10 |
|
simprl |
|- ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> n e. ZZ ) |
11 |
|
zmulcl |
|- ( ( 2 e. ZZ /\ n e. ZZ ) -> ( 2 x. n ) e. ZZ ) |
12 |
9 10 11
|
sylancr |
|- ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( 2 x. n ) e. ZZ ) |
13 |
7 8 12
|
expclzd |
|- ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( A ^ ( 2 x. n ) ) e. CC ) |
14 |
13 7
|
mulneg2d |
|- ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( ( A ^ ( 2 x. n ) ) x. -u A ) = -u ( ( A ^ ( 2 x. n ) ) x. A ) ) |
15 |
|
sqneg |
|- ( A e. CC -> ( -u A ^ 2 ) = ( A ^ 2 ) ) |
16 |
7 15
|
syl |
|- ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( -u A ^ 2 ) = ( A ^ 2 ) ) |
17 |
16
|
oveq1d |
|- ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( ( -u A ^ 2 ) ^ n ) = ( ( A ^ 2 ) ^ n ) ) |
18 |
7
|
negcld |
|- ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> -u A e. CC ) |
19 |
7 8
|
negne0d |
|- ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> -u A =/= 0 ) |
20 |
9
|
a1i |
|- ( ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) -> 2 e. ZZ ) |
21 |
|
simpl |
|- ( ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) -> n e. ZZ ) |
22 |
20 21
|
jca |
|- ( ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) -> ( 2 e. ZZ /\ n e. ZZ ) ) |
23 |
22
|
adantl |
|- ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( 2 e. ZZ /\ n e. ZZ ) ) |
24 |
18 19 23
|
jca31 |
|- ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( ( -u A e. CC /\ -u A =/= 0 ) /\ ( 2 e. ZZ /\ n e. ZZ ) ) ) |
25 |
|
expmulz |
|- ( ( ( -u A e. CC /\ -u A =/= 0 ) /\ ( 2 e. ZZ /\ n e. ZZ ) ) -> ( -u A ^ ( 2 x. n ) ) = ( ( -u A ^ 2 ) ^ n ) ) |
26 |
24 25
|
syl |
|- ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( -u A ^ ( 2 x. n ) ) = ( ( -u A ^ 2 ) ^ n ) ) |
27 |
7 8 23
|
jca31 |
|- ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( ( A e. CC /\ A =/= 0 ) /\ ( 2 e. ZZ /\ n e. ZZ ) ) ) |
28 |
|
expmulz |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( 2 e. ZZ /\ n e. ZZ ) ) -> ( A ^ ( 2 x. n ) ) = ( ( A ^ 2 ) ^ n ) ) |
29 |
27 28
|
syl |
|- ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( A ^ ( 2 x. n ) ) = ( ( A ^ 2 ) ^ n ) ) |
30 |
17 26 29
|
3eqtr4d |
|- ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( -u A ^ ( 2 x. n ) ) = ( A ^ ( 2 x. n ) ) ) |
31 |
30
|
oveq1d |
|- ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( ( -u A ^ ( 2 x. n ) ) x. -u A ) = ( ( A ^ ( 2 x. n ) ) x. -u A ) ) |
32 |
18 19 12
|
expp1zd |
|- ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( -u A ^ ( ( 2 x. n ) + 1 ) ) = ( ( -u A ^ ( 2 x. n ) ) x. -u A ) ) |
33 |
|
simprr |
|- ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( ( 2 x. n ) + 1 ) = N ) |
34 |
33
|
oveq2d |
|- ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( -u A ^ ( ( 2 x. n ) + 1 ) ) = ( -u A ^ N ) ) |
35 |
32 34
|
eqtr3d |
|- ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( ( -u A ^ ( 2 x. n ) ) x. -u A ) = ( -u A ^ N ) ) |
36 |
31 35
|
eqtr3d |
|- ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( ( A ^ ( 2 x. n ) ) x. -u A ) = ( -u A ^ N ) ) |
37 |
14 36
|
eqtr3d |
|- ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> -u ( ( A ^ ( 2 x. n ) ) x. A ) = ( -u A ^ N ) ) |
38 |
7 8 12
|
expp1zd |
|- ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( A ^ ( ( 2 x. n ) + 1 ) ) = ( ( A ^ ( 2 x. n ) ) x. A ) ) |
39 |
33
|
oveq2d |
|- ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( A ^ ( ( 2 x. n ) + 1 ) ) = ( A ^ N ) ) |
40 |
38 39
|
eqtr3d |
|- ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( ( A ^ ( 2 x. n ) ) x. A ) = ( A ^ N ) ) |
41 |
40
|
negeqd |
|- ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> -u ( ( A ^ ( 2 x. n ) ) x. A ) = -u ( A ^ N ) ) |
42 |
37 41
|
eqtr3d |
|- ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( -u A ^ N ) = -u ( A ^ N ) ) |
43 |
6 42
|
rexlimddv |
|- ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) -> ( -u A ^ N ) = -u ( A ^ N ) ) |