| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oddz |  |-  ( N e. Odd -> N e. ZZ ) | 
						
							| 2 |  | odd2np1ALTV |  |-  ( N e. ZZ -> ( N e. Odd <-> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) | 
						
							| 3 | 1 2 | syl |  |-  ( N e. Odd -> ( N e. Odd <-> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) | 
						
							| 4 | 3 | biimpd |  |-  ( N e. Odd -> ( N e. Odd -> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) | 
						
							| 5 | 4 | pm2.43i |  |-  ( N e. Odd -> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) | 
						
							| 6 | 5 | 3ad2ant3 |  |-  ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) -> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) | 
						
							| 7 |  | simpl1 |  |-  ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> A e. CC ) | 
						
							| 8 |  | simpl2 |  |-  ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> A =/= 0 ) | 
						
							| 9 |  | 2z |  |-  2 e. ZZ | 
						
							| 10 |  | simprl |  |-  ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> n e. ZZ ) | 
						
							| 11 |  | zmulcl |  |-  ( ( 2 e. ZZ /\ n e. ZZ ) -> ( 2 x. n ) e. ZZ ) | 
						
							| 12 | 9 10 11 | sylancr |  |-  ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( 2 x. n ) e. ZZ ) | 
						
							| 13 | 7 8 12 | expclzd |  |-  ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( A ^ ( 2 x. n ) ) e. CC ) | 
						
							| 14 | 13 7 | mulneg2d |  |-  ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( ( A ^ ( 2 x. n ) ) x. -u A ) = -u ( ( A ^ ( 2 x. n ) ) x. A ) ) | 
						
							| 15 |  | sqneg |  |-  ( A e. CC -> ( -u A ^ 2 ) = ( A ^ 2 ) ) | 
						
							| 16 | 7 15 | syl |  |-  ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( -u A ^ 2 ) = ( A ^ 2 ) ) | 
						
							| 17 | 16 | oveq1d |  |-  ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( ( -u A ^ 2 ) ^ n ) = ( ( A ^ 2 ) ^ n ) ) | 
						
							| 18 | 7 | negcld |  |-  ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> -u A e. CC ) | 
						
							| 19 | 7 8 | negne0d |  |-  ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> -u A =/= 0 ) | 
						
							| 20 | 9 | a1i |  |-  ( ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) -> 2 e. ZZ ) | 
						
							| 21 |  | simpl |  |-  ( ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) -> n e. ZZ ) | 
						
							| 22 | 20 21 | jca |  |-  ( ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) -> ( 2 e. ZZ /\ n e. ZZ ) ) | 
						
							| 23 | 22 | adantl |  |-  ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( 2 e. ZZ /\ n e. ZZ ) ) | 
						
							| 24 | 18 19 23 | jca31 |  |-  ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( ( -u A e. CC /\ -u A =/= 0 ) /\ ( 2 e. ZZ /\ n e. ZZ ) ) ) | 
						
							| 25 |  | expmulz |  |-  ( ( ( -u A e. CC /\ -u A =/= 0 ) /\ ( 2 e. ZZ /\ n e. ZZ ) ) -> ( -u A ^ ( 2 x. n ) ) = ( ( -u A ^ 2 ) ^ n ) ) | 
						
							| 26 | 24 25 | syl |  |-  ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( -u A ^ ( 2 x. n ) ) = ( ( -u A ^ 2 ) ^ n ) ) | 
						
							| 27 | 7 8 23 | jca31 |  |-  ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( ( A e. CC /\ A =/= 0 ) /\ ( 2 e. ZZ /\ n e. ZZ ) ) ) | 
						
							| 28 |  | expmulz |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( 2 e. ZZ /\ n e. ZZ ) ) -> ( A ^ ( 2 x. n ) ) = ( ( A ^ 2 ) ^ n ) ) | 
						
							| 29 | 27 28 | syl |  |-  ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( A ^ ( 2 x. n ) ) = ( ( A ^ 2 ) ^ n ) ) | 
						
							| 30 | 17 26 29 | 3eqtr4d |  |-  ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( -u A ^ ( 2 x. n ) ) = ( A ^ ( 2 x. n ) ) ) | 
						
							| 31 | 30 | oveq1d |  |-  ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( ( -u A ^ ( 2 x. n ) ) x. -u A ) = ( ( A ^ ( 2 x. n ) ) x. -u A ) ) | 
						
							| 32 | 18 19 12 | expp1zd |  |-  ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( -u A ^ ( ( 2 x. n ) + 1 ) ) = ( ( -u A ^ ( 2 x. n ) ) x. -u A ) ) | 
						
							| 33 |  | simprr |  |-  ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( ( 2 x. n ) + 1 ) = N ) | 
						
							| 34 | 33 | oveq2d |  |-  ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( -u A ^ ( ( 2 x. n ) + 1 ) ) = ( -u A ^ N ) ) | 
						
							| 35 | 32 34 | eqtr3d |  |-  ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( ( -u A ^ ( 2 x. n ) ) x. -u A ) = ( -u A ^ N ) ) | 
						
							| 36 | 31 35 | eqtr3d |  |-  ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( ( A ^ ( 2 x. n ) ) x. -u A ) = ( -u A ^ N ) ) | 
						
							| 37 | 14 36 | eqtr3d |  |-  ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> -u ( ( A ^ ( 2 x. n ) ) x. A ) = ( -u A ^ N ) ) | 
						
							| 38 | 7 8 12 | expp1zd |  |-  ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( A ^ ( ( 2 x. n ) + 1 ) ) = ( ( A ^ ( 2 x. n ) ) x. A ) ) | 
						
							| 39 | 33 | oveq2d |  |-  ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( A ^ ( ( 2 x. n ) + 1 ) ) = ( A ^ N ) ) | 
						
							| 40 | 38 39 | eqtr3d |  |-  ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( ( A ^ ( 2 x. n ) ) x. A ) = ( A ^ N ) ) | 
						
							| 41 | 40 | negeqd |  |-  ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> -u ( ( A ^ ( 2 x. n ) ) x. A ) = -u ( A ^ N ) ) | 
						
							| 42 | 37 41 | eqtr3d |  |-  ( ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( -u A ^ N ) = -u ( A ^ N ) ) | 
						
							| 43 | 6 42 | rexlimddv |  |-  ( ( A e. CC /\ A =/= 0 /\ N e. Odd ) -> ( -u A ^ N ) = -u ( A ^ N ) ) |