| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oddz |
|
| 2 |
|
odd2np1ALTV |
|
| 3 |
1 2
|
syl |
|
| 4 |
3
|
biimpd |
|
| 5 |
4
|
pm2.43i |
|
| 6 |
5
|
3ad2ant3 |
|
| 7 |
|
simpl1 |
|
| 8 |
|
simpl2 |
|
| 9 |
|
2z |
|
| 10 |
|
simprl |
|
| 11 |
|
zmulcl |
|
| 12 |
9 10 11
|
sylancr |
|
| 13 |
7 8 12
|
expclzd |
|
| 14 |
13 7
|
mulneg2d |
|
| 15 |
|
sqneg |
|
| 16 |
7 15
|
syl |
|
| 17 |
16
|
oveq1d |
|
| 18 |
7
|
negcld |
|
| 19 |
7 8
|
negne0d |
|
| 20 |
9
|
a1i |
|
| 21 |
|
simpl |
|
| 22 |
20 21
|
jca |
|
| 23 |
22
|
adantl |
|
| 24 |
18 19 23
|
jca31 |
|
| 25 |
|
expmulz |
|
| 26 |
24 25
|
syl |
|
| 27 |
7 8 23
|
jca31 |
|
| 28 |
|
expmulz |
|
| 29 |
27 28
|
syl |
|
| 30 |
17 26 29
|
3eqtr4d |
|
| 31 |
30
|
oveq1d |
|
| 32 |
18 19 12
|
expp1zd |
|
| 33 |
|
simprr |
|
| 34 |
33
|
oveq2d |
|
| 35 |
32 34
|
eqtr3d |
|
| 36 |
31 35
|
eqtr3d |
|
| 37 |
14 36
|
eqtr3d |
|
| 38 |
7 8 12
|
expp1zd |
|
| 39 |
33
|
oveq2d |
|
| 40 |
38 39
|
eqtr3d |
|
| 41 |
40
|
negeqd |
|
| 42 |
37 41
|
eqtr3d |
|
| 43 |
6 42
|
rexlimddv |
|