Step |
Hyp |
Ref |
Expression |
1 |
|
oddz |
|
2 |
|
odd2np1ALTV |
|
3 |
1 2
|
syl |
|
4 |
3
|
biimpd |
|
5 |
4
|
pm2.43i |
|
6 |
5
|
3ad2ant3 |
|
7 |
|
simpl1 |
|
8 |
|
simpl2 |
|
9 |
|
2z |
|
10 |
|
simprl |
|
11 |
|
zmulcl |
|
12 |
9 10 11
|
sylancr |
|
13 |
7 8 12
|
expclzd |
|
14 |
13 7
|
mulneg2d |
|
15 |
|
sqneg |
|
16 |
7 15
|
syl |
|
17 |
16
|
oveq1d |
|
18 |
7
|
negcld |
|
19 |
7 8
|
negne0d |
|
20 |
9
|
a1i |
|
21 |
|
simpl |
|
22 |
20 21
|
jca |
|
23 |
22
|
adantl |
|
24 |
18 19 23
|
jca31 |
|
25 |
|
expmulz |
|
26 |
24 25
|
syl |
|
27 |
7 8 23
|
jca31 |
|
28 |
|
expmulz |
|
29 |
27 28
|
syl |
|
30 |
17 26 29
|
3eqtr4d |
|
31 |
30
|
oveq1d |
|
32 |
18 19 12
|
expp1zd |
|
33 |
|
simprr |
|
34 |
33
|
oveq2d |
|
35 |
32 34
|
eqtr3d |
|
36 |
31 35
|
eqtr3d |
|
37 |
14 36
|
eqtr3d |
|
38 |
7 8 12
|
expp1zd |
|
39 |
33
|
oveq2d |
|
40 |
38 39
|
eqtr3d |
|
41 |
40
|
negeqd |
|
42 |
37 41
|
eqtr3d |
|
43 |
6 42
|
rexlimddv |
|