| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oddz | ⊢ ( 𝑁  ∈   Odd   →  𝑁  ∈  ℤ ) | 
						
							| 2 |  | odd2np1ALTV | ⊢ ( 𝑁  ∈  ℤ  →  ( 𝑁  ∈   Odd   ↔  ∃ 𝑛  ∈  ℤ ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) ) | 
						
							| 3 | 1 2 | syl | ⊢ ( 𝑁  ∈   Odd   →  ( 𝑁  ∈   Odd   ↔  ∃ 𝑛  ∈  ℤ ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) ) | 
						
							| 4 | 3 | biimpd | ⊢ ( 𝑁  ∈   Odd   →  ( 𝑁  ∈   Odd   →  ∃ 𝑛  ∈  ℤ ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) ) | 
						
							| 5 | 4 | pm2.43i | ⊢ ( 𝑁  ∈   Odd   →  ∃ 𝑛  ∈  ℤ ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) | 
						
							| 6 | 5 | 3ad2ant3 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝑁  ∈   Odd  )  →  ∃ 𝑛  ∈  ℤ ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) | 
						
							| 7 |  | simpl1 | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝑁  ∈   Odd  )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 8 |  | simpl2 | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝑁  ∈   Odd  )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) )  →  𝐴  ≠  0 ) | 
						
							| 9 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 10 |  | simprl | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝑁  ∈   Odd  )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) )  →  𝑛  ∈  ℤ ) | 
						
							| 11 |  | zmulcl | ⊢ ( ( 2  ∈  ℤ  ∧  𝑛  ∈  ℤ )  →  ( 2  ·  𝑛 )  ∈  ℤ ) | 
						
							| 12 | 9 10 11 | sylancr | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝑁  ∈   Odd  )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) )  →  ( 2  ·  𝑛 )  ∈  ℤ ) | 
						
							| 13 | 7 8 12 | expclzd | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝑁  ∈   Odd  )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) )  →  ( 𝐴 ↑ ( 2  ·  𝑛 ) )  ∈  ℂ ) | 
						
							| 14 | 13 7 | mulneg2d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝑁  ∈   Odd  )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) )  →  ( ( 𝐴 ↑ ( 2  ·  𝑛 ) )  ·  - 𝐴 )  =  - ( ( 𝐴 ↑ ( 2  ·  𝑛 ) )  ·  𝐴 ) ) | 
						
							| 15 |  | sqneg | ⊢ ( 𝐴  ∈  ℂ  →  ( - 𝐴 ↑ 2 )  =  ( 𝐴 ↑ 2 ) ) | 
						
							| 16 | 7 15 | syl | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝑁  ∈   Odd  )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) )  →  ( - 𝐴 ↑ 2 )  =  ( 𝐴 ↑ 2 ) ) | 
						
							| 17 | 16 | oveq1d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝑁  ∈   Odd  )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) )  →  ( ( - 𝐴 ↑ 2 ) ↑ 𝑛 )  =  ( ( 𝐴 ↑ 2 ) ↑ 𝑛 ) ) | 
						
							| 18 | 7 | negcld | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝑁  ∈   Odd  )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) )  →  - 𝐴  ∈  ℂ ) | 
						
							| 19 | 7 8 | negne0d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝑁  ∈   Odd  )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) )  →  - 𝐴  ≠  0 ) | 
						
							| 20 | 9 | a1i | ⊢ ( ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 )  →  2  ∈  ℤ ) | 
						
							| 21 |  | simpl | ⊢ ( ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 )  →  𝑛  ∈  ℤ ) | 
						
							| 22 | 20 21 | jca | ⊢ ( ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 )  →  ( 2  ∈  ℤ  ∧  𝑛  ∈  ℤ ) ) | 
						
							| 23 | 22 | adantl | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝑁  ∈   Odd  )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) )  →  ( 2  ∈  ℤ  ∧  𝑛  ∈  ℤ ) ) | 
						
							| 24 | 18 19 23 | jca31 | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝑁  ∈   Odd  )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) )  →  ( ( - 𝐴  ∈  ℂ  ∧  - 𝐴  ≠  0 )  ∧  ( 2  ∈  ℤ  ∧  𝑛  ∈  ℤ ) ) ) | 
						
							| 25 |  | expmulz | ⊢ ( ( ( - 𝐴  ∈  ℂ  ∧  - 𝐴  ≠  0 )  ∧  ( 2  ∈  ℤ  ∧  𝑛  ∈  ℤ ) )  →  ( - 𝐴 ↑ ( 2  ·  𝑛 ) )  =  ( ( - 𝐴 ↑ 2 ) ↑ 𝑛 ) ) | 
						
							| 26 | 24 25 | syl | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝑁  ∈   Odd  )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) )  →  ( - 𝐴 ↑ ( 2  ·  𝑛 ) )  =  ( ( - 𝐴 ↑ 2 ) ↑ 𝑛 ) ) | 
						
							| 27 | 7 8 23 | jca31 | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝑁  ∈   Odd  )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) )  →  ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  ( 2  ∈  ℤ  ∧  𝑛  ∈  ℤ ) ) ) | 
						
							| 28 |  | expmulz | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  ( 2  ∈  ℤ  ∧  𝑛  ∈  ℤ ) )  →  ( 𝐴 ↑ ( 2  ·  𝑛 ) )  =  ( ( 𝐴 ↑ 2 ) ↑ 𝑛 ) ) | 
						
							| 29 | 27 28 | syl | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝑁  ∈   Odd  )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) )  →  ( 𝐴 ↑ ( 2  ·  𝑛 ) )  =  ( ( 𝐴 ↑ 2 ) ↑ 𝑛 ) ) | 
						
							| 30 | 17 26 29 | 3eqtr4d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝑁  ∈   Odd  )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) )  →  ( - 𝐴 ↑ ( 2  ·  𝑛 ) )  =  ( 𝐴 ↑ ( 2  ·  𝑛 ) ) ) | 
						
							| 31 | 30 | oveq1d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝑁  ∈   Odd  )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) )  →  ( ( - 𝐴 ↑ ( 2  ·  𝑛 ) )  ·  - 𝐴 )  =  ( ( 𝐴 ↑ ( 2  ·  𝑛 ) )  ·  - 𝐴 ) ) | 
						
							| 32 | 18 19 12 | expp1zd | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝑁  ∈   Odd  )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) )  →  ( - 𝐴 ↑ ( ( 2  ·  𝑛 )  +  1 ) )  =  ( ( - 𝐴 ↑ ( 2  ·  𝑛 ) )  ·  - 𝐴 ) ) | 
						
							| 33 |  | simprr | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝑁  ∈   Odd  )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) )  →  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) | 
						
							| 34 | 33 | oveq2d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝑁  ∈   Odd  )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) )  →  ( - 𝐴 ↑ ( ( 2  ·  𝑛 )  +  1 ) )  =  ( - 𝐴 ↑ 𝑁 ) ) | 
						
							| 35 | 32 34 | eqtr3d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝑁  ∈   Odd  )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) )  →  ( ( - 𝐴 ↑ ( 2  ·  𝑛 ) )  ·  - 𝐴 )  =  ( - 𝐴 ↑ 𝑁 ) ) | 
						
							| 36 | 31 35 | eqtr3d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝑁  ∈   Odd  )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) )  →  ( ( 𝐴 ↑ ( 2  ·  𝑛 ) )  ·  - 𝐴 )  =  ( - 𝐴 ↑ 𝑁 ) ) | 
						
							| 37 | 14 36 | eqtr3d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝑁  ∈   Odd  )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) )  →  - ( ( 𝐴 ↑ ( 2  ·  𝑛 ) )  ·  𝐴 )  =  ( - 𝐴 ↑ 𝑁 ) ) | 
						
							| 38 | 7 8 12 | expp1zd | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝑁  ∈   Odd  )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) )  →  ( 𝐴 ↑ ( ( 2  ·  𝑛 )  +  1 ) )  =  ( ( 𝐴 ↑ ( 2  ·  𝑛 ) )  ·  𝐴 ) ) | 
						
							| 39 | 33 | oveq2d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝑁  ∈   Odd  )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) )  →  ( 𝐴 ↑ ( ( 2  ·  𝑛 )  +  1 ) )  =  ( 𝐴 ↑ 𝑁 ) ) | 
						
							| 40 | 38 39 | eqtr3d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝑁  ∈   Odd  )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) )  →  ( ( 𝐴 ↑ ( 2  ·  𝑛 ) )  ·  𝐴 )  =  ( 𝐴 ↑ 𝑁 ) ) | 
						
							| 41 | 40 | negeqd | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝑁  ∈   Odd  )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) )  →  - ( ( 𝐴 ↑ ( 2  ·  𝑛 ) )  ·  𝐴 )  =  - ( 𝐴 ↑ 𝑁 ) ) | 
						
							| 42 | 37 41 | eqtr3d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝑁  ∈   Odd  )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) )  →  ( - 𝐴 ↑ 𝑁 )  =  - ( 𝐴 ↑ 𝑁 ) ) | 
						
							| 43 | 6 42 | rexlimddv | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝑁  ∈   Odd  )  →  ( - 𝐴 ↑ 𝑁 )  =  - ( 𝐴 ↑ 𝑁 ) ) |