Step |
Hyp |
Ref |
Expression |
1 |
|
oddz |
⊢ ( 𝑁 ∈ Odd → 𝑁 ∈ ℤ ) |
2 |
|
odd2np1ALTV |
⊢ ( 𝑁 ∈ ℤ → ( 𝑁 ∈ Odd ↔ ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) |
3 |
1 2
|
syl |
⊢ ( 𝑁 ∈ Odd → ( 𝑁 ∈ Odd ↔ ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) |
4 |
3
|
biimpd |
⊢ ( 𝑁 ∈ Odd → ( 𝑁 ∈ Odd → ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) |
5 |
4
|
pm2.43i |
⊢ ( 𝑁 ∈ Odd → ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) |
6 |
5
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) → ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) |
7 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → 𝐴 ∈ ℂ ) |
8 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → 𝐴 ≠ 0 ) |
9 |
|
2z |
⊢ 2 ∈ ℤ |
10 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → 𝑛 ∈ ℤ ) |
11 |
|
zmulcl |
⊢ ( ( 2 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( 2 · 𝑛 ) ∈ ℤ ) |
12 |
9 10 11
|
sylancr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → ( 2 · 𝑛 ) ∈ ℤ ) |
13 |
7 8 12
|
expclzd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → ( 𝐴 ↑ ( 2 · 𝑛 ) ) ∈ ℂ ) |
14 |
13 7
|
mulneg2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → ( ( 𝐴 ↑ ( 2 · 𝑛 ) ) · - 𝐴 ) = - ( ( 𝐴 ↑ ( 2 · 𝑛 ) ) · 𝐴 ) ) |
15 |
|
sqneg |
⊢ ( 𝐴 ∈ ℂ → ( - 𝐴 ↑ 2 ) = ( 𝐴 ↑ 2 ) ) |
16 |
7 15
|
syl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → ( - 𝐴 ↑ 2 ) = ( 𝐴 ↑ 2 ) ) |
17 |
16
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → ( ( - 𝐴 ↑ 2 ) ↑ 𝑛 ) = ( ( 𝐴 ↑ 2 ) ↑ 𝑛 ) ) |
18 |
7
|
negcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → - 𝐴 ∈ ℂ ) |
19 |
7 8
|
negne0d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → - 𝐴 ≠ 0 ) |
20 |
9
|
a1i |
⊢ ( ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) → 2 ∈ ℤ ) |
21 |
|
simpl |
⊢ ( ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) → 𝑛 ∈ ℤ ) |
22 |
20 21
|
jca |
⊢ ( ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) → ( 2 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) |
23 |
22
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → ( 2 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) |
24 |
18 19 23
|
jca31 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → ( ( - 𝐴 ∈ ℂ ∧ - 𝐴 ≠ 0 ) ∧ ( 2 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ) |
25 |
|
expmulz |
⊢ ( ( ( - 𝐴 ∈ ℂ ∧ - 𝐴 ≠ 0 ) ∧ ( 2 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) → ( - 𝐴 ↑ ( 2 · 𝑛 ) ) = ( ( - 𝐴 ↑ 2 ) ↑ 𝑛 ) ) |
26 |
24 25
|
syl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → ( - 𝐴 ↑ ( 2 · 𝑛 ) ) = ( ( - 𝐴 ↑ 2 ) ↑ 𝑛 ) ) |
27 |
7 8 23
|
jca31 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 2 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ) |
28 |
|
expmulz |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 2 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) → ( 𝐴 ↑ ( 2 · 𝑛 ) ) = ( ( 𝐴 ↑ 2 ) ↑ 𝑛 ) ) |
29 |
27 28
|
syl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → ( 𝐴 ↑ ( 2 · 𝑛 ) ) = ( ( 𝐴 ↑ 2 ) ↑ 𝑛 ) ) |
30 |
17 26 29
|
3eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → ( - 𝐴 ↑ ( 2 · 𝑛 ) ) = ( 𝐴 ↑ ( 2 · 𝑛 ) ) ) |
31 |
30
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → ( ( - 𝐴 ↑ ( 2 · 𝑛 ) ) · - 𝐴 ) = ( ( 𝐴 ↑ ( 2 · 𝑛 ) ) · - 𝐴 ) ) |
32 |
18 19 12
|
expp1zd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → ( - 𝐴 ↑ ( ( 2 · 𝑛 ) + 1 ) ) = ( ( - 𝐴 ↑ ( 2 · 𝑛 ) ) · - 𝐴 ) ) |
33 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) |
34 |
33
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → ( - 𝐴 ↑ ( ( 2 · 𝑛 ) + 1 ) ) = ( - 𝐴 ↑ 𝑁 ) ) |
35 |
32 34
|
eqtr3d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → ( ( - 𝐴 ↑ ( 2 · 𝑛 ) ) · - 𝐴 ) = ( - 𝐴 ↑ 𝑁 ) ) |
36 |
31 35
|
eqtr3d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → ( ( 𝐴 ↑ ( 2 · 𝑛 ) ) · - 𝐴 ) = ( - 𝐴 ↑ 𝑁 ) ) |
37 |
14 36
|
eqtr3d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → - ( ( 𝐴 ↑ ( 2 · 𝑛 ) ) · 𝐴 ) = ( - 𝐴 ↑ 𝑁 ) ) |
38 |
7 8 12
|
expp1zd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → ( 𝐴 ↑ ( ( 2 · 𝑛 ) + 1 ) ) = ( ( 𝐴 ↑ ( 2 · 𝑛 ) ) · 𝐴 ) ) |
39 |
33
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → ( 𝐴 ↑ ( ( 2 · 𝑛 ) + 1 ) ) = ( 𝐴 ↑ 𝑁 ) ) |
40 |
38 39
|
eqtr3d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → ( ( 𝐴 ↑ ( 2 · 𝑛 ) ) · 𝐴 ) = ( 𝐴 ↑ 𝑁 ) ) |
41 |
40
|
negeqd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → - ( ( 𝐴 ↑ ( 2 · 𝑛 ) ) · 𝐴 ) = - ( 𝐴 ↑ 𝑁 ) ) |
42 |
37 41
|
eqtr3d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → ( - 𝐴 ↑ 𝑁 ) = - ( 𝐴 ↑ 𝑁 ) ) |
43 |
6 42
|
rexlimddv |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) → ( - 𝐴 ↑ 𝑁 ) = - ( 𝐴 ↑ 𝑁 ) ) |