| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp2 |
|- ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) -> F : A --> RR ) |
| 2 |
1
|
ffvelcdmda |
|- ( ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) /\ x e. A ) -> ( F ` x ) e. RR ) |
| 3 |
|
simp3 |
|- ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) -> G : A --> RR ) |
| 4 |
3
|
ffvelcdmda |
|- ( ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) /\ x e. A ) -> ( G ` x ) e. RR ) |
| 5 |
2 4
|
subge0d |
|- ( ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) /\ x e. A ) -> ( 0 <_ ( ( F ` x ) - ( G ` x ) ) <-> ( G ` x ) <_ ( F ` x ) ) ) |
| 6 |
5
|
ralbidva |
|- ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) -> ( A. x e. A 0 <_ ( ( F ` x ) - ( G ` x ) ) <-> A. x e. A ( G ` x ) <_ ( F ` x ) ) ) |
| 7 |
|
0cn |
|- 0 e. CC |
| 8 |
|
fnconstg |
|- ( 0 e. CC -> ( A X. { 0 } ) Fn A ) |
| 9 |
7 8
|
mp1i |
|- ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) -> ( A X. { 0 } ) Fn A ) |
| 10 |
1
|
ffnd |
|- ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) -> F Fn A ) |
| 11 |
3
|
ffnd |
|- ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) -> G Fn A ) |
| 12 |
|
simp1 |
|- ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) -> A e. V ) |
| 13 |
|
inidm |
|- ( A i^i A ) = A |
| 14 |
10 11 12 12 13
|
offn |
|- ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) -> ( F oF - G ) Fn A ) |
| 15 |
|
c0ex |
|- 0 e. _V |
| 16 |
15
|
fvconst2 |
|- ( x e. A -> ( ( A X. { 0 } ) ` x ) = 0 ) |
| 17 |
16
|
adantl |
|- ( ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) /\ x e. A ) -> ( ( A X. { 0 } ) ` x ) = 0 ) |
| 18 |
|
eqidd |
|- ( ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) /\ x e. A ) -> ( F ` x ) = ( F ` x ) ) |
| 19 |
|
eqidd |
|- ( ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) /\ x e. A ) -> ( G ` x ) = ( G ` x ) ) |
| 20 |
10 11 12 12 13 18 19
|
ofval |
|- ( ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) /\ x e. A ) -> ( ( F oF - G ) ` x ) = ( ( F ` x ) - ( G ` x ) ) ) |
| 21 |
9 14 12 12 13 17 20
|
ofrfval |
|- ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) -> ( ( A X. { 0 } ) oR <_ ( F oF - G ) <-> A. x e. A 0 <_ ( ( F ` x ) - ( G ` x ) ) ) ) |
| 22 |
11 10 12 12 13 19 18
|
ofrfval |
|- ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) -> ( G oR <_ F <-> A. x e. A ( G ` x ) <_ ( F ` x ) ) ) |
| 23 |
6 21 22
|
3bitr4d |
|- ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) -> ( ( A X. { 0 } ) oR <_ ( F oF - G ) <-> G oR <_ F ) ) |