Metamath Proof Explorer


Theorem ofsubge0

Description: Function analogue of subge0 . (Contributed by Mario Carneiro, 24-Jul-2014)

Ref Expression
Assertion ofsubge0 A V F : A G : A A × 0 f F f G G f F

Proof

Step Hyp Ref Expression
1 simp2 A V F : A G : A F : A
2 1 ffvelrnda A V F : A G : A x A F x
3 simp3 A V F : A G : A G : A
4 3 ffvelrnda A V F : A G : A x A G x
5 2 4 subge0d A V F : A G : A x A 0 F x G x G x F x
6 5 ralbidva A V F : A G : A x A 0 F x G x x A G x F x
7 0cn 0
8 fnconstg 0 A × 0 Fn A
9 7 8 mp1i A V F : A G : A A × 0 Fn A
10 1 ffnd A V F : A G : A F Fn A
11 3 ffnd A V F : A G : A G Fn A
12 simp1 A V F : A G : A A V
13 inidm A A = A
14 10 11 12 12 13 offn A V F : A G : A F f G Fn A
15 c0ex 0 V
16 15 fvconst2 x A A × 0 x = 0
17 16 adantl A V F : A G : A x A A × 0 x = 0
18 eqidd A V F : A G : A x A F x = F x
19 eqidd A V F : A G : A x A G x = G x
20 10 11 12 12 13 18 19 ofval A V F : A G : A x A F f G x = F x G x
21 9 14 12 12 13 17 20 ofrfval A V F : A G : A A × 0 f F f G x A 0 F x G x
22 11 10 12 12 13 19 18 ofrfval A V F : A G : A G f F x A G x F x
23 6 21 22 3bitr4d A V F : A G : A A × 0 f F f G G f F