Step |
Hyp |
Ref |
Expression |
1 |
|
simp2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ ) → 𝐹 : 𝐴 ⟶ ℝ ) |
2 |
1
|
ffvelrnda |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
3 |
|
simp3 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ ) → 𝐺 : 𝐴 ⟶ ℝ ) |
4 |
3
|
ffvelrnda |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) ∈ ℝ ) |
5 |
2 4
|
subge0d |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( 0 ≤ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ↔ ( 𝐺 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
6 |
5
|
ralbidva |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ ) → ( ∀ 𝑥 ∈ 𝐴 0 ≤ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐺 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
7 |
|
0cn |
⊢ 0 ∈ ℂ |
8 |
|
fnconstg |
⊢ ( 0 ∈ ℂ → ( 𝐴 × { 0 } ) Fn 𝐴 ) |
9 |
7 8
|
mp1i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ ) → ( 𝐴 × { 0 } ) Fn 𝐴 ) |
10 |
1
|
ffnd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ ) → 𝐹 Fn 𝐴 ) |
11 |
3
|
ffnd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ ) → 𝐺 Fn 𝐴 ) |
12 |
|
simp1 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ ) → 𝐴 ∈ 𝑉 ) |
13 |
|
inidm |
⊢ ( 𝐴 ∩ 𝐴 ) = 𝐴 |
14 |
10 11 12 12 13
|
offn |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ ) → ( 𝐹 ∘f − 𝐺 ) Fn 𝐴 ) |
15 |
|
c0ex |
⊢ 0 ∈ V |
16 |
15
|
fvconst2 |
⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝐴 × { 0 } ) ‘ 𝑥 ) = 0 ) |
17 |
16
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐴 × { 0 } ) ‘ 𝑥 ) = 0 ) |
18 |
|
eqidd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
19 |
|
eqidd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
20 |
10 11 12 12 13 18 19
|
ofval |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) |
21 |
9 14 12 12 13 17 20
|
ofrfval |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ ) → ( ( 𝐴 × { 0 } ) ∘r ≤ ( 𝐹 ∘f − 𝐺 ) ↔ ∀ 𝑥 ∈ 𝐴 0 ≤ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) ) |
22 |
11 10 12 12 13 19 18
|
ofrfval |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ ) → ( 𝐺 ∘r ≤ 𝐹 ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐺 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
23 |
6 21 22
|
3bitr4d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ ) → ( ( 𝐴 × { 0 } ) ∘r ≤ ( 𝐹 ∘f − 𝐺 ) ↔ 𝐺 ∘r ≤ 𝐹 ) ) |