Metamath Proof Explorer


Theorem olm01

Description: Meet with lattice zero is zero. ( chm0 analog.) (Contributed by NM, 8-Nov-2011)

Ref Expression
Hypotheses olm0.b
|- B = ( Base ` K )
olm0.m
|- ./\ = ( meet ` K )
olm0.z
|- .0. = ( 0. ` K )
Assertion olm01
|- ( ( K e. OL /\ X e. B ) -> ( X ./\ .0. ) = .0. )

Proof

Step Hyp Ref Expression
1 olm0.b
 |-  B = ( Base ` K )
2 olm0.m
 |-  ./\ = ( meet ` K )
3 olm0.z
 |-  .0. = ( 0. ` K )
4 eqid
 |-  ( le ` K ) = ( le ` K )
5 ollat
 |-  ( K e. OL -> K e. Lat )
6 5 adantr
 |-  ( ( K e. OL /\ X e. B ) -> K e. Lat )
7 simpr
 |-  ( ( K e. OL /\ X e. B ) -> X e. B )
8 olop
 |-  ( K e. OL -> K e. OP )
9 8 adantr
 |-  ( ( K e. OL /\ X e. B ) -> K e. OP )
10 1 3 op0cl
 |-  ( K e. OP -> .0. e. B )
11 9 10 syl
 |-  ( ( K e. OL /\ X e. B ) -> .0. e. B )
12 1 2 latmcl
 |-  ( ( K e. Lat /\ X e. B /\ .0. e. B ) -> ( X ./\ .0. ) e. B )
13 6 7 11 12 syl3anc
 |-  ( ( K e. OL /\ X e. B ) -> ( X ./\ .0. ) e. B )
14 1 4 2 latmle2
 |-  ( ( K e. Lat /\ X e. B /\ .0. e. B ) -> ( X ./\ .0. ) ( le ` K ) .0. )
15 6 7 11 14 syl3anc
 |-  ( ( K e. OL /\ X e. B ) -> ( X ./\ .0. ) ( le ` K ) .0. )
16 1 4 3 op0le
 |-  ( ( K e. OP /\ X e. B ) -> .0. ( le ` K ) X )
17 8 16 sylan
 |-  ( ( K e. OL /\ X e. B ) -> .0. ( le ` K ) X )
18 1 4 latref
 |-  ( ( K e. Lat /\ .0. e. B ) -> .0. ( le ` K ) .0. )
19 6 11 18 syl2anc
 |-  ( ( K e. OL /\ X e. B ) -> .0. ( le ` K ) .0. )
20 1 4 2 latlem12
 |-  ( ( K e. Lat /\ ( .0. e. B /\ X e. B /\ .0. e. B ) ) -> ( ( .0. ( le ` K ) X /\ .0. ( le ` K ) .0. ) <-> .0. ( le ` K ) ( X ./\ .0. ) ) )
21 6 11 7 11 20 syl13anc
 |-  ( ( K e. OL /\ X e. B ) -> ( ( .0. ( le ` K ) X /\ .0. ( le ` K ) .0. ) <-> .0. ( le ` K ) ( X ./\ .0. ) ) )
22 17 19 21 mpbi2and
 |-  ( ( K e. OL /\ X e. B ) -> .0. ( le ` K ) ( X ./\ .0. ) )
23 1 4 6 13 11 15 22 latasymd
 |-  ( ( K e. OL /\ X e. B ) -> ( X ./\ .0. ) = .0. )