| Step |
Hyp |
Ref |
Expression |
| 1 |
|
primefldgen1.b |
|- B = ( Base ` R ) |
| 2 |
|
primefldgen1.1 |
|- .1. = ( 1r ` R ) |
| 3 |
|
primefldgen1.r |
|- ( ph -> R e. DivRing ) |
| 4 |
|
issdrg |
|- ( a e. ( SubDRing ` R ) <-> ( R e. DivRing /\ a e. ( SubRing ` R ) /\ ( R |`s a ) e. DivRing ) ) |
| 5 |
4
|
simp2bi |
|- ( a e. ( SubDRing ` R ) -> a e. ( SubRing ` R ) ) |
| 6 |
2
|
subrg1cl |
|- ( a e. ( SubRing ` R ) -> .1. e. a ) |
| 7 |
5 6
|
syl |
|- ( a e. ( SubDRing ` R ) -> .1. e. a ) |
| 8 |
7
|
adantl |
|- ( ( ph /\ a e. ( SubDRing ` R ) ) -> .1. e. a ) |
| 9 |
8
|
snssd |
|- ( ( ph /\ a e. ( SubDRing ` R ) ) -> { .1. } C_ a ) |
| 10 |
9
|
ralrimiva |
|- ( ph -> A. a e. ( SubDRing ` R ) { .1. } C_ a ) |
| 11 |
|
rabid2 |
|- ( ( SubDRing ` R ) = { a e. ( SubDRing ` R ) | { .1. } C_ a } <-> A. a e. ( SubDRing ` R ) { .1. } C_ a ) |
| 12 |
10 11
|
sylibr |
|- ( ph -> ( SubDRing ` R ) = { a e. ( SubDRing ` R ) | { .1. } C_ a } ) |
| 13 |
12
|
inteqd |
|- ( ph -> |^| ( SubDRing ` R ) = |^| { a e. ( SubDRing ` R ) | { .1. } C_ a } ) |
| 14 |
3
|
drngringd |
|- ( ph -> R e. Ring ) |
| 15 |
1 2
|
ringidcl |
|- ( R e. Ring -> .1. e. B ) |
| 16 |
14 15
|
syl |
|- ( ph -> .1. e. B ) |
| 17 |
16
|
snssd |
|- ( ph -> { .1. } C_ B ) |
| 18 |
1 3 17
|
fldgenval |
|- ( ph -> ( R fldGen { .1. } ) = |^| { a e. ( SubDRing ` R ) | { .1. } C_ a } ) |
| 19 |
13 18
|
eqtr4d |
|- ( ph -> |^| ( SubDRing ` R ) = ( R fldGen { .1. } ) ) |