| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
| 2 |
|
cndrng |
|- CCfld e. DivRing |
| 3 |
2
|
a1i |
|- ( T. -> CCfld e. DivRing ) |
| 4 |
|
qsscn |
|- QQ C_ CC |
| 5 |
4
|
a1i |
|- ( T. -> QQ C_ CC ) |
| 6 |
|
1z |
|- 1 e. ZZ |
| 7 |
|
snssi |
|- ( 1 e. ZZ -> { 1 } C_ ZZ ) |
| 8 |
6 7
|
ax-mp |
|- { 1 } C_ ZZ |
| 9 |
|
zssq |
|- ZZ C_ QQ |
| 10 |
8 9
|
sstri |
|- { 1 } C_ QQ |
| 11 |
10
|
a1i |
|- ( T. -> { 1 } C_ QQ ) |
| 12 |
1 3 5 11
|
fldgenss |
|- ( T. -> ( CCfld fldGen { 1 } ) C_ ( CCfld fldGen QQ ) ) |
| 13 |
|
qsubdrg |
|- ( QQ e. ( SubRing ` CCfld ) /\ ( CCfld |`s QQ ) e. DivRing ) |
| 14 |
13
|
simpli |
|- QQ e. ( SubRing ` CCfld ) |
| 15 |
13
|
simpri |
|- ( CCfld |`s QQ ) e. DivRing |
| 16 |
|
issdrg |
|- ( QQ e. ( SubDRing ` CCfld ) <-> ( CCfld e. DivRing /\ QQ e. ( SubRing ` CCfld ) /\ ( CCfld |`s QQ ) e. DivRing ) ) |
| 17 |
2 14 15 16
|
mpbir3an |
|- QQ e. ( SubDRing ` CCfld ) |
| 18 |
17
|
a1i |
|- ( T. -> QQ e. ( SubDRing ` CCfld ) ) |
| 19 |
1 3 18
|
fldgenidfld |
|- ( T. -> ( CCfld fldGen QQ ) = QQ ) |
| 20 |
12 19
|
sseqtrd |
|- ( T. -> ( CCfld fldGen { 1 } ) C_ QQ ) |
| 21 |
|
elq |
|- ( z e. QQ <-> E. p e. ZZ E. q e. NN z = ( p / q ) ) |
| 22 |
|
cnflddiv |
|- / = ( /r ` CCfld ) |
| 23 |
|
cnfld0 |
|- 0 = ( 0g ` CCfld ) |
| 24 |
11 4
|
sstrdi |
|- ( T. -> { 1 } C_ CC ) |
| 25 |
1 3 24
|
fldgensdrg |
|- ( T. -> ( CCfld fldGen { 1 } ) e. ( SubDRing ` CCfld ) ) |
| 26 |
25
|
mptru |
|- ( CCfld fldGen { 1 } ) e. ( SubDRing ` CCfld ) |
| 27 |
26
|
a1i |
|- ( ( p e. ZZ /\ q e. NN ) -> ( CCfld fldGen { 1 } ) e. ( SubDRing ` CCfld ) ) |
| 28 |
|
ax-1cn |
|- 1 e. CC |
| 29 |
|
cnfldmulg |
|- ( ( p e. ZZ /\ 1 e. CC ) -> ( p ( .g ` CCfld ) 1 ) = ( p x. 1 ) ) |
| 30 |
28 29
|
mpan2 |
|- ( p e. ZZ -> ( p ( .g ` CCfld ) 1 ) = ( p x. 1 ) ) |
| 31 |
|
zre |
|- ( p e. ZZ -> p e. RR ) |
| 32 |
|
ax-1rid |
|- ( p e. RR -> ( p x. 1 ) = p ) |
| 33 |
31 32
|
syl |
|- ( p e. ZZ -> ( p x. 1 ) = p ) |
| 34 |
30 33
|
eqtrd |
|- ( p e. ZZ -> ( p ( .g ` CCfld ) 1 ) = p ) |
| 35 |
|
issdrg |
|- ( ( CCfld fldGen { 1 } ) e. ( SubDRing ` CCfld ) <-> ( CCfld e. DivRing /\ ( CCfld fldGen { 1 } ) e. ( SubRing ` CCfld ) /\ ( CCfld |`s ( CCfld fldGen { 1 } ) ) e. DivRing ) ) |
| 36 |
26 35
|
mpbi |
|- ( CCfld e. DivRing /\ ( CCfld fldGen { 1 } ) e. ( SubRing ` CCfld ) /\ ( CCfld |`s ( CCfld fldGen { 1 } ) ) e. DivRing ) |
| 37 |
36
|
simp2i |
|- ( CCfld fldGen { 1 } ) e. ( SubRing ` CCfld ) |
| 38 |
|
subrgsubg |
|- ( ( CCfld fldGen { 1 } ) e. ( SubRing ` CCfld ) -> ( CCfld fldGen { 1 } ) e. ( SubGrp ` CCfld ) ) |
| 39 |
37 38
|
ax-mp |
|- ( CCfld fldGen { 1 } ) e. ( SubGrp ` CCfld ) |
| 40 |
1 3 24
|
fldgenssid |
|- ( T. -> { 1 } C_ ( CCfld fldGen { 1 } ) ) |
| 41 |
|
1ex |
|- 1 e. _V |
| 42 |
41
|
snss |
|- ( 1 e. ( CCfld fldGen { 1 } ) <-> { 1 } C_ ( CCfld fldGen { 1 } ) ) |
| 43 |
40 42
|
sylibr |
|- ( T. -> 1 e. ( CCfld fldGen { 1 } ) ) |
| 44 |
43
|
mptru |
|- 1 e. ( CCfld fldGen { 1 } ) |
| 45 |
|
eqid |
|- ( .g ` CCfld ) = ( .g ` CCfld ) |
| 46 |
45
|
subgmulgcl |
|- ( ( ( CCfld fldGen { 1 } ) e. ( SubGrp ` CCfld ) /\ p e. ZZ /\ 1 e. ( CCfld fldGen { 1 } ) ) -> ( p ( .g ` CCfld ) 1 ) e. ( CCfld fldGen { 1 } ) ) |
| 47 |
39 44 46
|
mp3an13 |
|- ( p e. ZZ -> ( p ( .g ` CCfld ) 1 ) e. ( CCfld fldGen { 1 } ) ) |
| 48 |
34 47
|
eqeltrrd |
|- ( p e. ZZ -> p e. ( CCfld fldGen { 1 } ) ) |
| 49 |
48
|
adantr |
|- ( ( p e. ZZ /\ q e. NN ) -> p e. ( CCfld fldGen { 1 } ) ) |
| 50 |
48
|
ssriv |
|- ZZ C_ ( CCfld fldGen { 1 } ) |
| 51 |
|
nnz |
|- ( q e. NN -> q e. ZZ ) |
| 52 |
51
|
adantl |
|- ( ( p e. ZZ /\ q e. NN ) -> q e. ZZ ) |
| 53 |
50 52
|
sselid |
|- ( ( p e. ZZ /\ q e. NN ) -> q e. ( CCfld fldGen { 1 } ) ) |
| 54 |
|
nnne0 |
|- ( q e. NN -> q =/= 0 ) |
| 55 |
54
|
adantl |
|- ( ( p e. ZZ /\ q e. NN ) -> q =/= 0 ) |
| 56 |
22 23 27 49 53 55
|
sdrgdvcl |
|- ( ( p e. ZZ /\ q e. NN ) -> ( p / q ) e. ( CCfld fldGen { 1 } ) ) |
| 57 |
|
eleq1 |
|- ( z = ( p / q ) -> ( z e. ( CCfld fldGen { 1 } ) <-> ( p / q ) e. ( CCfld fldGen { 1 } ) ) ) |
| 58 |
56 57
|
syl5ibrcom |
|- ( ( p e. ZZ /\ q e. NN ) -> ( z = ( p / q ) -> z e. ( CCfld fldGen { 1 } ) ) ) |
| 59 |
58
|
rexlimivv |
|- ( E. p e. ZZ E. q e. NN z = ( p / q ) -> z e. ( CCfld fldGen { 1 } ) ) |
| 60 |
21 59
|
sylbi |
|- ( z e. QQ -> z e. ( CCfld fldGen { 1 } ) ) |
| 61 |
60
|
ssriv |
|- QQ C_ ( CCfld fldGen { 1 } ) |
| 62 |
61
|
a1i |
|- ( T. -> QQ C_ ( CCfld fldGen { 1 } ) ) |
| 63 |
20 62
|
eqssd |
|- ( T. -> ( CCfld fldGen { 1 } ) = QQ ) |
| 64 |
63
|
mptru |
|- ( CCfld fldGen { 1 } ) = QQ |