Step |
Hyp |
Ref |
Expression |
1 |
|
cnfldbas |
|
2 |
|
cndrng |
|
3 |
2
|
a1i |
|
4 |
|
qsscn |
|
5 |
4
|
a1i |
|
6 |
|
1z |
|
7 |
|
snssi |
|
8 |
6 7
|
ax-mp |
|
9 |
|
zssq |
|
10 |
8 9
|
sstri |
|
11 |
10
|
a1i |
|
12 |
1 3 5 11
|
fldgenss |
|
13 |
|
qsubdrg |
|
14 |
13
|
simpli |
|
15 |
13
|
simpri |
|
16 |
|
issdrg |
|
17 |
2 14 15 16
|
mpbir3an |
|
18 |
17
|
a1i |
|
19 |
1 3 18
|
fldgenidfld |
|
20 |
12 19
|
sseqtrd |
|
21 |
|
elq |
|
22 |
|
cnflddiv |
|
23 |
|
cnfld0 |
|
24 |
11 4
|
sstrdi |
|
25 |
1 3 24
|
fldgensdrg |
|
26 |
25
|
mptru |
|
27 |
26
|
a1i |
|
28 |
|
ax-1cn |
|
29 |
|
cnfldmulg |
|
30 |
28 29
|
mpan2 |
|
31 |
|
zre |
|
32 |
|
ax-1rid |
|
33 |
31 32
|
syl |
|
34 |
30 33
|
eqtrd |
|
35 |
|
issdrg |
|
36 |
26 35
|
mpbi |
|
37 |
36
|
simp2i |
|
38 |
|
subrgsubg |
|
39 |
37 38
|
ax-mp |
|
40 |
1 3 24
|
fldgenssid |
|
41 |
|
1ex |
|
42 |
41
|
snss |
|
43 |
40 42
|
sylibr |
|
44 |
43
|
mptru |
|
45 |
|
eqid |
|
46 |
45
|
subgmulgcl |
|
47 |
39 44 46
|
mp3an13 |
|
48 |
34 47
|
eqeltrrd |
|
49 |
48
|
adantr |
|
50 |
48
|
ssriv |
|
51 |
|
nnz |
|
52 |
51
|
adantl |
|
53 |
50 52
|
sselid |
|
54 |
|
nnne0 |
|
55 |
54
|
adantl |
|
56 |
22 23 27 49 53 55
|
sdrgdvcl |
|
57 |
|
eleq1 |
|
58 |
56 57
|
syl5ibrcom |
|
59 |
58
|
rexlimivv |
|
60 |
21 59
|
sylbi |
|
61 |
60
|
ssriv |
|
62 |
61
|
a1i |
|
63 |
20 62
|
eqssd |
|
64 |
63
|
mptru |
|