| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnfldbas |
|
| 2 |
|
cndrng |
|
| 3 |
2
|
a1i |
|
| 4 |
|
qsscn |
|
| 5 |
4
|
a1i |
|
| 6 |
|
1z |
|
| 7 |
|
snssi |
|
| 8 |
6 7
|
ax-mp |
|
| 9 |
|
zssq |
|
| 10 |
8 9
|
sstri |
|
| 11 |
10
|
a1i |
|
| 12 |
1 3 5 11
|
fldgenss |
|
| 13 |
|
qsubdrg |
|
| 14 |
13
|
simpli |
|
| 15 |
13
|
simpri |
|
| 16 |
|
issdrg |
|
| 17 |
2 14 15 16
|
mpbir3an |
|
| 18 |
17
|
a1i |
|
| 19 |
1 3 18
|
fldgenidfld |
|
| 20 |
12 19
|
sseqtrd |
|
| 21 |
|
elq |
|
| 22 |
|
cnflddiv |
|
| 23 |
|
cnfld0 |
|
| 24 |
11 4
|
sstrdi |
|
| 25 |
1 3 24
|
fldgensdrg |
|
| 26 |
25
|
mptru |
|
| 27 |
26
|
a1i |
|
| 28 |
|
ax-1cn |
|
| 29 |
|
cnfldmulg |
|
| 30 |
28 29
|
mpan2 |
|
| 31 |
|
zre |
|
| 32 |
|
ax-1rid |
|
| 33 |
31 32
|
syl |
|
| 34 |
30 33
|
eqtrd |
|
| 35 |
|
issdrg |
|
| 36 |
26 35
|
mpbi |
|
| 37 |
36
|
simp2i |
|
| 38 |
|
subrgsubg |
|
| 39 |
37 38
|
ax-mp |
|
| 40 |
1 3 24
|
fldgenssid |
|
| 41 |
|
1ex |
|
| 42 |
41
|
snss |
|
| 43 |
40 42
|
sylibr |
|
| 44 |
43
|
mptru |
|
| 45 |
|
eqid |
|
| 46 |
45
|
subgmulgcl |
|
| 47 |
39 44 46
|
mp3an13 |
|
| 48 |
34 47
|
eqeltrrd |
|
| 49 |
48
|
adantr |
|
| 50 |
48
|
ssriv |
|
| 51 |
|
nnz |
|
| 52 |
51
|
adantl |
|
| 53 |
50 52
|
sselid |
|
| 54 |
|
nnne0 |
|
| 55 |
54
|
adantl |
|
| 56 |
22 23 27 49 53 55
|
sdrgdvcl |
|
| 57 |
|
eleq1 |
|
| 58 |
56 57
|
syl5ibrcom |
|
| 59 |
58
|
rexlimivv |
|
| 60 |
21 59
|
sylbi |
|
| 61 |
60
|
ssriv |
|
| 62 |
61
|
a1i |
|
| 63 |
20 62
|
eqssd |
|
| 64 |
63
|
mptru |
|