Metamath Proof Explorer


Theorem 1fldgenq

Description: The field of rational numbers QQ is generated by 1 in CCfld , that is, QQ is the prime field of CCfld . (Contributed by Thierry Arnoux, 15-Jan-2025)

Ref Expression
Assertion 1fldgenq fld fldGen 1 =

Proof

Step Hyp Ref Expression
1 cnfldbas = Base fld
2 cndrng fld DivRing
3 2 a1i fld DivRing
4 qsscn
5 4 a1i
6 1z 1
7 snssi 1 1
8 6 7 ax-mp 1
9 zssq
10 8 9 sstri 1
11 10 a1i 1
12 1 3 5 11 fldgenss fld fldGen 1 fld fldGen
13 qsubdrg SubRing fld fld 𝑠 DivRing
14 13 simpli SubRing fld
15 13 simpri fld 𝑠 DivRing
16 issdrg SubDRing fld fld DivRing SubRing fld fld 𝑠 DivRing
17 2 14 15 16 mpbir3an SubDRing fld
18 17 a1i SubDRing fld
19 1 3 18 fldgenidfld fld fldGen =
20 12 19 sseqtrd fld fldGen 1
21 elq z p q z = p q
22 cnflddiv ÷ = / r fld
23 cnfld0 0 = 0 fld
24 11 4 sstrdi 1
25 1 3 24 fldgensdrg fld fldGen 1 SubDRing fld
26 25 mptru fld fldGen 1 SubDRing fld
27 26 a1i p q fld fldGen 1 SubDRing fld
28 ax-1cn 1
29 cnfldmulg p 1 p fld 1 = p 1
30 28 29 mpan2 p p fld 1 = p 1
31 zre p p
32 ax-1rid p p 1 = p
33 31 32 syl p p 1 = p
34 30 33 eqtrd p p fld 1 = p
35 issdrg fld fldGen 1 SubDRing fld fld DivRing fld fldGen 1 SubRing fld fld 𝑠 fld fldGen 1 DivRing
36 26 35 mpbi fld DivRing fld fldGen 1 SubRing fld fld 𝑠 fld fldGen 1 DivRing
37 36 simp2i fld fldGen 1 SubRing fld
38 subrgsubg fld fldGen 1 SubRing fld fld fldGen 1 SubGrp fld
39 37 38 ax-mp fld fldGen 1 SubGrp fld
40 1 3 24 fldgenssid 1 fld fldGen 1
41 1ex 1 V
42 41 snss 1 fld fldGen 1 1 fld fldGen 1
43 40 42 sylibr 1 fld fldGen 1
44 43 mptru 1 fld fldGen 1
45 eqid fld = fld
46 45 subgmulgcl fld fldGen 1 SubGrp fld p 1 fld fldGen 1 p fld 1 fld fldGen 1
47 39 44 46 mp3an13 p p fld 1 fld fldGen 1
48 34 47 eqeltrrd p p fld fldGen 1
49 48 adantr p q p fld fldGen 1
50 48 ssriv fld fldGen 1
51 nnz q q
52 51 adantl p q q
53 50 52 sselid p q q fld fldGen 1
54 nnne0 q q 0
55 54 adantl p q q 0
56 22 23 27 49 53 55 sdrgdvcl p q p q fld fldGen 1
57 eleq1 z = p q z fld fldGen 1 p q fld fldGen 1
58 56 57 syl5ibrcom p q z = p q z fld fldGen 1
59 58 rexlimivv p q z = p q z fld fldGen 1
60 21 59 sylbi z z fld fldGen 1
61 60 ssriv fld fldGen 1
62 61 a1i fld fldGen 1
63 20 62 eqssd fld fldGen 1 =
64 63 mptru fld fldGen 1 =