| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prmdiv.1 |  |-  R = ( ( A ^ ( P - 2 ) ) mod P ) | 
						
							| 2 |  | fz1ssfz0 |  |-  ( 1 ... ( P - 1 ) ) C_ ( 0 ... ( P - 1 ) ) | 
						
							| 3 |  | simpr |  |-  ( ( P e. Prime /\ A e. ( 1 ... ( P - 1 ) ) ) -> A e. ( 1 ... ( P - 1 ) ) ) | 
						
							| 4 | 2 3 | sselid |  |-  ( ( P e. Prime /\ A e. ( 1 ... ( P - 1 ) ) ) -> A e. ( 0 ... ( P - 1 ) ) ) | 
						
							| 5 |  | simpl |  |-  ( ( P e. Prime /\ A e. ( 1 ... ( P - 1 ) ) ) -> P e. Prime ) | 
						
							| 6 |  | elfznn |  |-  ( A e. ( 1 ... ( P - 1 ) ) -> A e. NN ) | 
						
							| 7 | 6 | adantl |  |-  ( ( P e. Prime /\ A e. ( 1 ... ( P - 1 ) ) ) -> A e. NN ) | 
						
							| 8 | 7 | nnzd |  |-  ( ( P e. Prime /\ A e. ( 1 ... ( P - 1 ) ) ) -> A e. ZZ ) | 
						
							| 9 |  | prmnn |  |-  ( P e. Prime -> P e. NN ) | 
						
							| 10 |  | fzm1ndvds |  |-  ( ( P e. NN /\ A e. ( 1 ... ( P - 1 ) ) ) -> -. P || A ) | 
						
							| 11 | 9 10 | sylan |  |-  ( ( P e. Prime /\ A e. ( 1 ... ( P - 1 ) ) ) -> -. P || A ) | 
						
							| 12 | 1 | prmdiv |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( R e. ( 1 ... ( P - 1 ) ) /\ P || ( ( A x. R ) - 1 ) ) ) | 
						
							| 13 | 5 8 11 12 | syl3anc |  |-  ( ( P e. Prime /\ A e. ( 1 ... ( P - 1 ) ) ) -> ( R e. ( 1 ... ( P - 1 ) ) /\ P || ( ( A x. R ) - 1 ) ) ) | 
						
							| 14 | 13 | simprd |  |-  ( ( P e. Prime /\ A e. ( 1 ... ( P - 1 ) ) ) -> P || ( ( A x. R ) - 1 ) ) | 
						
							| 15 | 7 | nncnd |  |-  ( ( P e. Prime /\ A e. ( 1 ... ( P - 1 ) ) ) -> A e. CC ) | 
						
							| 16 | 13 | simpld |  |-  ( ( P e. Prime /\ A e. ( 1 ... ( P - 1 ) ) ) -> R e. ( 1 ... ( P - 1 ) ) ) | 
						
							| 17 |  | elfznn |  |-  ( R e. ( 1 ... ( P - 1 ) ) -> R e. NN ) | 
						
							| 18 | 16 17 | syl |  |-  ( ( P e. Prime /\ A e. ( 1 ... ( P - 1 ) ) ) -> R e. NN ) | 
						
							| 19 | 18 | nncnd |  |-  ( ( P e. Prime /\ A e. ( 1 ... ( P - 1 ) ) ) -> R e. CC ) | 
						
							| 20 | 15 19 | mulcomd |  |-  ( ( P e. Prime /\ A e. ( 1 ... ( P - 1 ) ) ) -> ( A x. R ) = ( R x. A ) ) | 
						
							| 21 | 20 | oveq1d |  |-  ( ( P e. Prime /\ A e. ( 1 ... ( P - 1 ) ) ) -> ( ( A x. R ) - 1 ) = ( ( R x. A ) - 1 ) ) | 
						
							| 22 | 14 21 | breqtrd |  |-  ( ( P e. Prime /\ A e. ( 1 ... ( P - 1 ) ) ) -> P || ( ( R x. A ) - 1 ) ) | 
						
							| 23 | 16 | elfzelzd |  |-  ( ( P e. Prime /\ A e. ( 1 ... ( P - 1 ) ) ) -> R e. ZZ ) | 
						
							| 24 |  | fzm1ndvds |  |-  ( ( P e. NN /\ R e. ( 1 ... ( P - 1 ) ) ) -> -. P || R ) | 
						
							| 25 | 9 16 24 | syl2an2r |  |-  ( ( P e. Prime /\ A e. ( 1 ... ( P - 1 ) ) ) -> -. P || R ) | 
						
							| 26 |  | eqid |  |-  ( ( R ^ ( P - 2 ) ) mod P ) = ( ( R ^ ( P - 2 ) ) mod P ) | 
						
							| 27 | 26 | prmdiveq |  |-  ( ( P e. Prime /\ R e. ZZ /\ -. P || R ) -> ( ( A e. ( 0 ... ( P - 1 ) ) /\ P || ( ( R x. A ) - 1 ) ) <-> A = ( ( R ^ ( P - 2 ) ) mod P ) ) ) | 
						
							| 28 | 5 23 25 27 | syl3anc |  |-  ( ( P e. Prime /\ A e. ( 1 ... ( P - 1 ) ) ) -> ( ( A e. ( 0 ... ( P - 1 ) ) /\ P || ( ( R x. A ) - 1 ) ) <-> A = ( ( R ^ ( P - 2 ) ) mod P ) ) ) | 
						
							| 29 | 4 22 28 | mpbi2and |  |-  ( ( P e. Prime /\ A e. ( 1 ... ( P - 1 ) ) ) -> A = ( ( R ^ ( P - 2 ) ) mod P ) ) |