| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eleq1 |
|- ( x = A -> ( x e. ( R1 ` B ) <-> A e. ( R1 ` B ) ) ) |
| 2 |
|
pweq |
|- ( x = A -> ~P x = ~P A ) |
| 3 |
2
|
eleq1d |
|- ( x = A -> ( ~P x e. ( R1 ` suc B ) <-> ~P A e. ( R1 ` suc B ) ) ) |
| 4 |
1 3
|
bibi12d |
|- ( x = A -> ( ( x e. ( R1 ` B ) <-> ~P x e. ( R1 ` suc B ) ) <-> ( A e. ( R1 ` B ) <-> ~P A e. ( R1 ` suc B ) ) ) ) |
| 5 |
4
|
imbi2d |
|- ( x = A -> ( ( B e. On -> ( x e. ( R1 ` B ) <-> ~P x e. ( R1 ` suc B ) ) ) <-> ( B e. On -> ( A e. ( R1 ` B ) <-> ~P A e. ( R1 ` suc B ) ) ) ) ) |
| 6 |
|
vex |
|- x e. _V |
| 7 |
6
|
rankr1a |
|- ( B e. On -> ( x e. ( R1 ` B ) <-> ( rank ` x ) e. B ) ) |
| 8 |
|
eloni |
|- ( B e. On -> Ord B ) |
| 9 |
|
ordsucelsuc |
|- ( Ord B -> ( ( rank ` x ) e. B <-> suc ( rank ` x ) e. suc B ) ) |
| 10 |
8 9
|
syl |
|- ( B e. On -> ( ( rank ` x ) e. B <-> suc ( rank ` x ) e. suc B ) ) |
| 11 |
7 10
|
bitrd |
|- ( B e. On -> ( x e. ( R1 ` B ) <-> suc ( rank ` x ) e. suc B ) ) |
| 12 |
6
|
rankpw |
|- ( rank ` ~P x ) = suc ( rank ` x ) |
| 13 |
12
|
eleq1i |
|- ( ( rank ` ~P x ) e. suc B <-> suc ( rank ` x ) e. suc B ) |
| 14 |
11 13
|
bitr4di |
|- ( B e. On -> ( x e. ( R1 ` B ) <-> ( rank ` ~P x ) e. suc B ) ) |
| 15 |
|
onsuc |
|- ( B e. On -> suc B e. On ) |
| 16 |
6
|
pwex |
|- ~P x e. _V |
| 17 |
16
|
rankr1a |
|- ( suc B e. On -> ( ~P x e. ( R1 ` suc B ) <-> ( rank ` ~P x ) e. suc B ) ) |
| 18 |
15 17
|
syl |
|- ( B e. On -> ( ~P x e. ( R1 ` suc B ) <-> ( rank ` ~P x ) e. suc B ) ) |
| 19 |
14 18
|
bitr4d |
|- ( B e. On -> ( x e. ( R1 ` B ) <-> ~P x e. ( R1 ` suc B ) ) ) |
| 20 |
5 19
|
vtoclg |
|- ( A e. _V -> ( B e. On -> ( A e. ( R1 ` B ) <-> ~P A e. ( R1 ` suc B ) ) ) ) |
| 21 |
|
elex |
|- ( A e. ( R1 ` B ) -> A e. _V ) |
| 22 |
|
elex |
|- ( ~P A e. ( R1 ` suc B ) -> ~P A e. _V ) |
| 23 |
|
pwexb |
|- ( A e. _V <-> ~P A e. _V ) |
| 24 |
22 23
|
sylibr |
|- ( ~P A e. ( R1 ` suc B ) -> A e. _V ) |
| 25 |
21 24
|
pm5.21ni |
|- ( -. A e. _V -> ( A e. ( R1 ` B ) <-> ~P A e. ( R1 ` suc B ) ) ) |
| 26 |
25
|
a1d |
|- ( -. A e. _V -> ( B e. On -> ( A e. ( R1 ` B ) <-> ~P A e. ( R1 ` suc B ) ) ) ) |
| 27 |
20 26
|
pm2.61i |
|- ( B e. On -> ( A e. ( R1 ` B ) <-> ~P A e. ( R1 ` suc B ) ) ) |