Step |
Hyp |
Ref |
Expression |
1 |
|
rhmsscmap.u |
|- ( ph -> U e. V ) |
2 |
|
rhmsscmap.r |
|- ( ph -> R = ( Ring i^i U ) ) |
3 |
|
ssidd |
|- ( ph -> R C_ R ) |
4 |
|
eqid |
|- ( Base ` a ) = ( Base ` a ) |
5 |
|
eqid |
|- ( Base ` b ) = ( Base ` b ) |
6 |
4 5
|
rhmf |
|- ( h e. ( a RingHom b ) -> h : ( Base ` a ) --> ( Base ` b ) ) |
7 |
|
simpr |
|- ( ( ( ph /\ ( a e. R /\ b e. R ) ) /\ h : ( Base ` a ) --> ( Base ` b ) ) -> h : ( Base ` a ) --> ( Base ` b ) ) |
8 |
|
fvex |
|- ( Base ` b ) e. _V |
9 |
|
fvex |
|- ( Base ` a ) e. _V |
10 |
8 9
|
pm3.2i |
|- ( ( Base ` b ) e. _V /\ ( Base ` a ) e. _V ) |
11 |
|
elmapg |
|- ( ( ( Base ` b ) e. _V /\ ( Base ` a ) e. _V ) -> ( h e. ( ( Base ` b ) ^m ( Base ` a ) ) <-> h : ( Base ` a ) --> ( Base ` b ) ) ) |
12 |
10 11
|
mp1i |
|- ( ( ( ph /\ ( a e. R /\ b e. R ) ) /\ h : ( Base ` a ) --> ( Base ` b ) ) -> ( h e. ( ( Base ` b ) ^m ( Base ` a ) ) <-> h : ( Base ` a ) --> ( Base ` b ) ) ) |
13 |
7 12
|
mpbird |
|- ( ( ( ph /\ ( a e. R /\ b e. R ) ) /\ h : ( Base ` a ) --> ( Base ` b ) ) -> h e. ( ( Base ` b ) ^m ( Base ` a ) ) ) |
14 |
13
|
ex |
|- ( ( ph /\ ( a e. R /\ b e. R ) ) -> ( h : ( Base ` a ) --> ( Base ` b ) -> h e. ( ( Base ` b ) ^m ( Base ` a ) ) ) ) |
15 |
6 14
|
syl5 |
|- ( ( ph /\ ( a e. R /\ b e. R ) ) -> ( h e. ( a RingHom b ) -> h e. ( ( Base ` b ) ^m ( Base ` a ) ) ) ) |
16 |
15
|
ssrdv |
|- ( ( ph /\ ( a e. R /\ b e. R ) ) -> ( a RingHom b ) C_ ( ( Base ` b ) ^m ( Base ` a ) ) ) |
17 |
|
ovres |
|- ( ( a e. R /\ b e. R ) -> ( a ( RingHom |` ( R X. R ) ) b ) = ( a RingHom b ) ) |
18 |
17
|
adantl |
|- ( ( ph /\ ( a e. R /\ b e. R ) ) -> ( a ( RingHom |` ( R X. R ) ) b ) = ( a RingHom b ) ) |
19 |
|
eqidd |
|- ( ( a e. R /\ b e. R ) -> ( x e. R , y e. R |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) = ( x e. R , y e. R |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) ) |
20 |
|
fveq2 |
|- ( y = b -> ( Base ` y ) = ( Base ` b ) ) |
21 |
|
fveq2 |
|- ( x = a -> ( Base ` x ) = ( Base ` a ) ) |
22 |
20 21
|
oveqan12rd |
|- ( ( x = a /\ y = b ) -> ( ( Base ` y ) ^m ( Base ` x ) ) = ( ( Base ` b ) ^m ( Base ` a ) ) ) |
23 |
22
|
adantl |
|- ( ( ( a e. R /\ b e. R ) /\ ( x = a /\ y = b ) ) -> ( ( Base ` y ) ^m ( Base ` x ) ) = ( ( Base ` b ) ^m ( Base ` a ) ) ) |
24 |
|
simpl |
|- ( ( a e. R /\ b e. R ) -> a e. R ) |
25 |
|
simpr |
|- ( ( a e. R /\ b e. R ) -> b e. R ) |
26 |
|
ovexd |
|- ( ( a e. R /\ b e. R ) -> ( ( Base ` b ) ^m ( Base ` a ) ) e. _V ) |
27 |
19 23 24 25 26
|
ovmpod |
|- ( ( a e. R /\ b e. R ) -> ( a ( x e. R , y e. R |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) b ) = ( ( Base ` b ) ^m ( Base ` a ) ) ) |
28 |
27
|
adantl |
|- ( ( ph /\ ( a e. R /\ b e. R ) ) -> ( a ( x e. R , y e. R |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) b ) = ( ( Base ` b ) ^m ( Base ` a ) ) ) |
29 |
16 18 28
|
3sstr4d |
|- ( ( ph /\ ( a e. R /\ b e. R ) ) -> ( a ( RingHom |` ( R X. R ) ) b ) C_ ( a ( x e. R , y e. R |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) b ) ) |
30 |
29
|
ralrimivva |
|- ( ph -> A. a e. R A. b e. R ( a ( RingHom |` ( R X. R ) ) b ) C_ ( a ( x e. R , y e. R |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) b ) ) |
31 |
|
rhmfn |
|- RingHom Fn ( Ring X. Ring ) |
32 |
31
|
a1i |
|- ( ph -> RingHom Fn ( Ring X. Ring ) ) |
33 |
|
inss1 |
|- ( Ring i^i U ) C_ Ring |
34 |
2 33
|
eqsstrdi |
|- ( ph -> R C_ Ring ) |
35 |
|
xpss12 |
|- ( ( R C_ Ring /\ R C_ Ring ) -> ( R X. R ) C_ ( Ring X. Ring ) ) |
36 |
34 34 35
|
syl2anc |
|- ( ph -> ( R X. R ) C_ ( Ring X. Ring ) ) |
37 |
|
fnssres |
|- ( ( RingHom Fn ( Ring X. Ring ) /\ ( R X. R ) C_ ( Ring X. Ring ) ) -> ( RingHom |` ( R X. R ) ) Fn ( R X. R ) ) |
38 |
32 36 37
|
syl2anc |
|- ( ph -> ( RingHom |` ( R X. R ) ) Fn ( R X. R ) ) |
39 |
|
eqid |
|- ( x e. R , y e. R |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) = ( x e. R , y e. R |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) |
40 |
|
ovex |
|- ( ( Base ` y ) ^m ( Base ` x ) ) e. _V |
41 |
39 40
|
fnmpoi |
|- ( x e. R , y e. R |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) Fn ( R X. R ) |
42 |
41
|
a1i |
|- ( ph -> ( x e. R , y e. R |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) Fn ( R X. R ) ) |
43 |
|
incom |
|- ( Ring i^i U ) = ( U i^i Ring ) |
44 |
|
inex1g |
|- ( U e. V -> ( U i^i Ring ) e. _V ) |
45 |
1 44
|
syl |
|- ( ph -> ( U i^i Ring ) e. _V ) |
46 |
43 45
|
eqeltrid |
|- ( ph -> ( Ring i^i U ) e. _V ) |
47 |
2 46
|
eqeltrd |
|- ( ph -> R e. _V ) |
48 |
38 42 47
|
isssc |
|- ( ph -> ( ( RingHom |` ( R X. R ) ) C_cat ( x e. R , y e. R |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) <-> ( R C_ R /\ A. a e. R A. b e. R ( a ( RingHom |` ( R X. R ) ) b ) C_ ( a ( x e. R , y e. R |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) b ) ) ) ) |
49 |
3 30 48
|
mpbir2and |
|- ( ph -> ( RingHom |` ( R X. R ) ) C_cat ( x e. R , y e. R |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) ) |