| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rlimeq.1 |  |-  ( ( ph /\ x e. A ) -> B e. CC ) | 
						
							| 2 |  | rlimeq.2 |  |-  ( ( ph /\ x e. A ) -> C e. CC ) | 
						
							| 3 |  | rlimeq.3 |  |-  ( ph -> D e. RR ) | 
						
							| 4 |  | rlimeq.4 |  |-  ( ( ph /\ ( x e. A /\ D <_ x ) ) -> B = C ) | 
						
							| 5 |  | rlimss |  |-  ( ( x e. A |-> B ) ~~>r E -> dom ( x e. A |-> B ) C_ RR ) | 
						
							| 6 |  | eqid |  |-  ( x e. A |-> B ) = ( x e. A |-> B ) | 
						
							| 7 | 6 1 | dmmptd |  |-  ( ph -> dom ( x e. A |-> B ) = A ) | 
						
							| 8 | 7 | sseq1d |  |-  ( ph -> ( dom ( x e. A |-> B ) C_ RR <-> A C_ RR ) ) | 
						
							| 9 | 5 8 | imbitrid |  |-  ( ph -> ( ( x e. A |-> B ) ~~>r E -> A C_ RR ) ) | 
						
							| 10 |  | rlimss |  |-  ( ( x e. A |-> C ) ~~>r E -> dom ( x e. A |-> C ) C_ RR ) | 
						
							| 11 |  | eqid |  |-  ( x e. A |-> C ) = ( x e. A |-> C ) | 
						
							| 12 | 11 2 | dmmptd |  |-  ( ph -> dom ( x e. A |-> C ) = A ) | 
						
							| 13 | 12 | sseq1d |  |-  ( ph -> ( dom ( x e. A |-> C ) C_ RR <-> A C_ RR ) ) | 
						
							| 14 | 10 13 | imbitrid |  |-  ( ph -> ( ( x e. A |-> C ) ~~>r E -> A C_ RR ) ) | 
						
							| 15 |  | simpr |  |-  ( ( ph /\ x e. ( A i^i ( D [,) +oo ) ) ) -> x e. ( A i^i ( D [,) +oo ) ) ) | 
						
							| 16 |  | elin |  |-  ( x e. ( A i^i ( D [,) +oo ) ) <-> ( x e. A /\ x e. ( D [,) +oo ) ) ) | 
						
							| 17 | 15 16 | sylib |  |-  ( ( ph /\ x e. ( A i^i ( D [,) +oo ) ) ) -> ( x e. A /\ x e. ( D [,) +oo ) ) ) | 
						
							| 18 | 17 | simpld |  |-  ( ( ph /\ x e. ( A i^i ( D [,) +oo ) ) ) -> x e. A ) | 
						
							| 19 | 17 | simprd |  |-  ( ( ph /\ x e. ( A i^i ( D [,) +oo ) ) ) -> x e. ( D [,) +oo ) ) | 
						
							| 20 |  | elicopnf |  |-  ( D e. RR -> ( x e. ( D [,) +oo ) <-> ( x e. RR /\ D <_ x ) ) ) | 
						
							| 21 | 3 20 | syl |  |-  ( ph -> ( x e. ( D [,) +oo ) <-> ( x e. RR /\ D <_ x ) ) ) | 
						
							| 22 | 21 | biimpa |  |-  ( ( ph /\ x e. ( D [,) +oo ) ) -> ( x e. RR /\ D <_ x ) ) | 
						
							| 23 | 19 22 | syldan |  |-  ( ( ph /\ x e. ( A i^i ( D [,) +oo ) ) ) -> ( x e. RR /\ D <_ x ) ) | 
						
							| 24 | 23 | simprd |  |-  ( ( ph /\ x e. ( A i^i ( D [,) +oo ) ) ) -> D <_ x ) | 
						
							| 25 | 18 24 | jca |  |-  ( ( ph /\ x e. ( A i^i ( D [,) +oo ) ) ) -> ( x e. A /\ D <_ x ) ) | 
						
							| 26 | 25 4 | syldan |  |-  ( ( ph /\ x e. ( A i^i ( D [,) +oo ) ) ) -> B = C ) | 
						
							| 27 | 26 | mpteq2dva |  |-  ( ph -> ( x e. ( A i^i ( D [,) +oo ) ) |-> B ) = ( x e. ( A i^i ( D [,) +oo ) ) |-> C ) ) | 
						
							| 28 |  | inss1 |  |-  ( A i^i ( D [,) +oo ) ) C_ A | 
						
							| 29 |  | resmpt |  |-  ( ( A i^i ( D [,) +oo ) ) C_ A -> ( ( x e. A |-> B ) |` ( A i^i ( D [,) +oo ) ) ) = ( x e. ( A i^i ( D [,) +oo ) ) |-> B ) ) | 
						
							| 30 | 28 29 | ax-mp |  |-  ( ( x e. A |-> B ) |` ( A i^i ( D [,) +oo ) ) ) = ( x e. ( A i^i ( D [,) +oo ) ) |-> B ) | 
						
							| 31 |  | resmpt |  |-  ( ( A i^i ( D [,) +oo ) ) C_ A -> ( ( x e. A |-> C ) |` ( A i^i ( D [,) +oo ) ) ) = ( x e. ( A i^i ( D [,) +oo ) ) |-> C ) ) | 
						
							| 32 | 28 31 | ax-mp |  |-  ( ( x e. A |-> C ) |` ( A i^i ( D [,) +oo ) ) ) = ( x e. ( A i^i ( D [,) +oo ) ) |-> C ) | 
						
							| 33 | 27 30 32 | 3eqtr4g |  |-  ( ph -> ( ( x e. A |-> B ) |` ( A i^i ( D [,) +oo ) ) ) = ( ( x e. A |-> C ) |` ( A i^i ( D [,) +oo ) ) ) ) | 
						
							| 34 |  | resres |  |-  ( ( ( x e. A |-> B ) |` A ) |` ( D [,) +oo ) ) = ( ( x e. A |-> B ) |` ( A i^i ( D [,) +oo ) ) ) | 
						
							| 35 |  | resres |  |-  ( ( ( x e. A |-> C ) |` A ) |` ( D [,) +oo ) ) = ( ( x e. A |-> C ) |` ( A i^i ( D [,) +oo ) ) ) | 
						
							| 36 | 33 34 35 | 3eqtr4g |  |-  ( ph -> ( ( ( x e. A |-> B ) |` A ) |` ( D [,) +oo ) ) = ( ( ( x e. A |-> C ) |` A ) |` ( D [,) +oo ) ) ) | 
						
							| 37 |  | ssid |  |-  A C_ A | 
						
							| 38 |  | resmpt |  |-  ( A C_ A -> ( ( x e. A |-> B ) |` A ) = ( x e. A |-> B ) ) | 
						
							| 39 |  | reseq1 |  |-  ( ( ( x e. A |-> B ) |` A ) = ( x e. A |-> B ) -> ( ( ( x e. A |-> B ) |` A ) |` ( D [,) +oo ) ) = ( ( x e. A |-> B ) |` ( D [,) +oo ) ) ) | 
						
							| 40 | 37 38 39 | mp2b |  |-  ( ( ( x e. A |-> B ) |` A ) |` ( D [,) +oo ) ) = ( ( x e. A |-> B ) |` ( D [,) +oo ) ) | 
						
							| 41 |  | resmpt |  |-  ( A C_ A -> ( ( x e. A |-> C ) |` A ) = ( x e. A |-> C ) ) | 
						
							| 42 |  | reseq1 |  |-  ( ( ( x e. A |-> C ) |` A ) = ( x e. A |-> C ) -> ( ( ( x e. A |-> C ) |` A ) |` ( D [,) +oo ) ) = ( ( x e. A |-> C ) |` ( D [,) +oo ) ) ) | 
						
							| 43 | 37 41 42 | mp2b |  |-  ( ( ( x e. A |-> C ) |` A ) |` ( D [,) +oo ) ) = ( ( x e. A |-> C ) |` ( D [,) +oo ) ) | 
						
							| 44 | 36 40 43 | 3eqtr3g |  |-  ( ph -> ( ( x e. A |-> B ) |` ( D [,) +oo ) ) = ( ( x e. A |-> C ) |` ( D [,) +oo ) ) ) | 
						
							| 45 | 44 | breq1d |  |-  ( ph -> ( ( ( x e. A |-> B ) |` ( D [,) +oo ) ) ~~>r E <-> ( ( x e. A |-> C ) |` ( D [,) +oo ) ) ~~>r E ) ) | 
						
							| 46 | 45 | adantr |  |-  ( ( ph /\ A C_ RR ) -> ( ( ( x e. A |-> B ) |` ( D [,) +oo ) ) ~~>r E <-> ( ( x e. A |-> C ) |` ( D [,) +oo ) ) ~~>r E ) ) | 
						
							| 47 | 1 | fmpttd |  |-  ( ph -> ( x e. A |-> B ) : A --> CC ) | 
						
							| 48 | 47 | adantr |  |-  ( ( ph /\ A C_ RR ) -> ( x e. A |-> B ) : A --> CC ) | 
						
							| 49 |  | simpr |  |-  ( ( ph /\ A C_ RR ) -> A C_ RR ) | 
						
							| 50 | 3 | adantr |  |-  ( ( ph /\ A C_ RR ) -> D e. RR ) | 
						
							| 51 | 48 49 50 | rlimresb |  |-  ( ( ph /\ A C_ RR ) -> ( ( x e. A |-> B ) ~~>r E <-> ( ( x e. A |-> B ) |` ( D [,) +oo ) ) ~~>r E ) ) | 
						
							| 52 | 2 | fmpttd |  |-  ( ph -> ( x e. A |-> C ) : A --> CC ) | 
						
							| 53 | 52 | adantr |  |-  ( ( ph /\ A C_ RR ) -> ( x e. A |-> C ) : A --> CC ) | 
						
							| 54 | 53 49 50 | rlimresb |  |-  ( ( ph /\ A C_ RR ) -> ( ( x e. A |-> C ) ~~>r E <-> ( ( x e. A |-> C ) |` ( D [,) +oo ) ) ~~>r E ) ) | 
						
							| 55 | 46 51 54 | 3bitr4d |  |-  ( ( ph /\ A C_ RR ) -> ( ( x e. A |-> B ) ~~>r E <-> ( x e. A |-> C ) ~~>r E ) ) | 
						
							| 56 | 55 | ex |  |-  ( ph -> ( A C_ RR -> ( ( x e. A |-> B ) ~~>r E <-> ( x e. A |-> C ) ~~>r E ) ) ) | 
						
							| 57 | 9 14 56 | pm5.21ndd |  |-  ( ph -> ( ( x e. A |-> B ) ~~>r E <-> ( x e. A |-> C ) ~~>r E ) ) |