| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rlimeq.1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ℂ ) | 
						
							| 2 |  | rlimeq.2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐶  ∈  ℂ ) | 
						
							| 3 |  | rlimeq.3 | ⊢ ( 𝜑  →  𝐷  ∈  ℝ ) | 
						
							| 4 |  | rlimeq.4 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝐷  ≤  𝑥 ) )  →  𝐵  =  𝐶 ) | 
						
							| 5 |  | rlimss | ⊢ ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ⇝𝑟  𝐸  →  dom  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ⊆  ℝ ) | 
						
							| 6 |  | eqid | ⊢ ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  ( 𝑥  ∈  𝐴  ↦  𝐵 ) | 
						
							| 7 | 6 1 | dmmptd | ⊢ ( 𝜑  →  dom  ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  𝐴 ) | 
						
							| 8 | 7 | sseq1d | ⊢ ( 𝜑  →  ( dom  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ⊆  ℝ  ↔  𝐴  ⊆  ℝ ) ) | 
						
							| 9 | 5 8 | imbitrid | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ⇝𝑟  𝐸  →  𝐴  ⊆  ℝ ) ) | 
						
							| 10 |  | rlimss | ⊢ ( ( 𝑥  ∈  𝐴  ↦  𝐶 )  ⇝𝑟  𝐸  →  dom  ( 𝑥  ∈  𝐴  ↦  𝐶 )  ⊆  ℝ ) | 
						
							| 11 |  | eqid | ⊢ ( 𝑥  ∈  𝐴  ↦  𝐶 )  =  ( 𝑥  ∈  𝐴  ↦  𝐶 ) | 
						
							| 12 | 11 2 | dmmptd | ⊢ ( 𝜑  →  dom  ( 𝑥  ∈  𝐴  ↦  𝐶 )  =  𝐴 ) | 
						
							| 13 | 12 | sseq1d | ⊢ ( 𝜑  →  ( dom  ( 𝑥  ∈  𝐴  ↦  𝐶 )  ⊆  ℝ  ↔  𝐴  ⊆  ℝ ) ) | 
						
							| 14 | 10 13 | imbitrid | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  𝐶 )  ⇝𝑟  𝐸  →  𝐴  ⊆  ℝ ) ) | 
						
							| 15 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴  ∩  ( 𝐷 [,) +∞ ) ) )  →  𝑥  ∈  ( 𝐴  ∩  ( 𝐷 [,) +∞ ) ) ) | 
						
							| 16 |  | elin | ⊢ ( 𝑥  ∈  ( 𝐴  ∩  ( 𝐷 [,) +∞ ) )  ↔  ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  ( 𝐷 [,) +∞ ) ) ) | 
						
							| 17 | 15 16 | sylib | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴  ∩  ( 𝐷 [,) +∞ ) ) )  →  ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  ( 𝐷 [,) +∞ ) ) ) | 
						
							| 18 | 17 | simpld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴  ∩  ( 𝐷 [,) +∞ ) ) )  →  𝑥  ∈  𝐴 ) | 
						
							| 19 | 17 | simprd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴  ∩  ( 𝐷 [,) +∞ ) ) )  →  𝑥  ∈  ( 𝐷 [,) +∞ ) ) | 
						
							| 20 |  | elicopnf | ⊢ ( 𝐷  ∈  ℝ  →  ( 𝑥  ∈  ( 𝐷 [,) +∞ )  ↔  ( 𝑥  ∈  ℝ  ∧  𝐷  ≤  𝑥 ) ) ) | 
						
							| 21 | 3 20 | syl | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐷 [,) +∞ )  ↔  ( 𝑥  ∈  ℝ  ∧  𝐷  ≤  𝑥 ) ) ) | 
						
							| 22 | 21 | biimpa | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐷 [,) +∞ ) )  →  ( 𝑥  ∈  ℝ  ∧  𝐷  ≤  𝑥 ) ) | 
						
							| 23 | 19 22 | syldan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴  ∩  ( 𝐷 [,) +∞ ) ) )  →  ( 𝑥  ∈  ℝ  ∧  𝐷  ≤  𝑥 ) ) | 
						
							| 24 | 23 | simprd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴  ∩  ( 𝐷 [,) +∞ ) ) )  →  𝐷  ≤  𝑥 ) | 
						
							| 25 | 18 24 | jca | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴  ∩  ( 𝐷 [,) +∞ ) ) )  →  ( 𝑥  ∈  𝐴  ∧  𝐷  ≤  𝑥 ) ) | 
						
							| 26 | 25 4 | syldan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴  ∩  ( 𝐷 [,) +∞ ) ) )  →  𝐵  =  𝐶 ) | 
						
							| 27 | 26 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐴  ∩  ( 𝐷 [,) +∞ ) )  ↦  𝐵 )  =  ( 𝑥  ∈  ( 𝐴  ∩  ( 𝐷 [,) +∞ ) )  ↦  𝐶 ) ) | 
						
							| 28 |  | inss1 | ⊢ ( 𝐴  ∩  ( 𝐷 [,) +∞ ) )  ⊆  𝐴 | 
						
							| 29 |  | resmpt | ⊢ ( ( 𝐴  ∩  ( 𝐷 [,) +∞ ) )  ⊆  𝐴  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ↾  ( 𝐴  ∩  ( 𝐷 [,) +∞ ) ) )  =  ( 𝑥  ∈  ( 𝐴  ∩  ( 𝐷 [,) +∞ ) )  ↦  𝐵 ) ) | 
						
							| 30 | 28 29 | ax-mp | ⊢ ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ↾  ( 𝐴  ∩  ( 𝐷 [,) +∞ ) ) )  =  ( 𝑥  ∈  ( 𝐴  ∩  ( 𝐷 [,) +∞ ) )  ↦  𝐵 ) | 
						
							| 31 |  | resmpt | ⊢ ( ( 𝐴  ∩  ( 𝐷 [,) +∞ ) )  ⊆  𝐴  →  ( ( 𝑥  ∈  𝐴  ↦  𝐶 )  ↾  ( 𝐴  ∩  ( 𝐷 [,) +∞ ) ) )  =  ( 𝑥  ∈  ( 𝐴  ∩  ( 𝐷 [,) +∞ ) )  ↦  𝐶 ) ) | 
						
							| 32 | 28 31 | ax-mp | ⊢ ( ( 𝑥  ∈  𝐴  ↦  𝐶 )  ↾  ( 𝐴  ∩  ( 𝐷 [,) +∞ ) ) )  =  ( 𝑥  ∈  ( 𝐴  ∩  ( 𝐷 [,) +∞ ) )  ↦  𝐶 ) | 
						
							| 33 | 27 30 32 | 3eqtr4g | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ↾  ( 𝐴  ∩  ( 𝐷 [,) +∞ ) ) )  =  ( ( 𝑥  ∈  𝐴  ↦  𝐶 )  ↾  ( 𝐴  ∩  ( 𝐷 [,) +∞ ) ) ) ) | 
						
							| 34 |  | resres | ⊢ ( ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ↾  𝐴 )  ↾  ( 𝐷 [,) +∞ ) )  =  ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ↾  ( 𝐴  ∩  ( 𝐷 [,) +∞ ) ) ) | 
						
							| 35 |  | resres | ⊢ ( ( ( 𝑥  ∈  𝐴  ↦  𝐶 )  ↾  𝐴 )  ↾  ( 𝐷 [,) +∞ ) )  =  ( ( 𝑥  ∈  𝐴  ↦  𝐶 )  ↾  ( 𝐴  ∩  ( 𝐷 [,) +∞ ) ) ) | 
						
							| 36 | 33 34 35 | 3eqtr4g | ⊢ ( 𝜑  →  ( ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ↾  𝐴 )  ↾  ( 𝐷 [,) +∞ ) )  =  ( ( ( 𝑥  ∈  𝐴  ↦  𝐶 )  ↾  𝐴 )  ↾  ( 𝐷 [,) +∞ ) ) ) | 
						
							| 37 |  | ssid | ⊢ 𝐴  ⊆  𝐴 | 
						
							| 38 |  | resmpt | ⊢ ( 𝐴  ⊆  𝐴  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ↾  𝐴 )  =  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) | 
						
							| 39 |  | reseq1 | ⊢ ( ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ↾  𝐴 )  =  ( 𝑥  ∈  𝐴  ↦  𝐵 )  →  ( ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ↾  𝐴 )  ↾  ( 𝐷 [,) +∞ ) )  =  ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ↾  ( 𝐷 [,) +∞ ) ) ) | 
						
							| 40 | 37 38 39 | mp2b | ⊢ ( ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ↾  𝐴 )  ↾  ( 𝐷 [,) +∞ ) )  =  ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ↾  ( 𝐷 [,) +∞ ) ) | 
						
							| 41 |  | resmpt | ⊢ ( 𝐴  ⊆  𝐴  →  ( ( 𝑥  ∈  𝐴  ↦  𝐶 )  ↾  𝐴 )  =  ( 𝑥  ∈  𝐴  ↦  𝐶 ) ) | 
						
							| 42 |  | reseq1 | ⊢ ( ( ( 𝑥  ∈  𝐴  ↦  𝐶 )  ↾  𝐴 )  =  ( 𝑥  ∈  𝐴  ↦  𝐶 )  →  ( ( ( 𝑥  ∈  𝐴  ↦  𝐶 )  ↾  𝐴 )  ↾  ( 𝐷 [,) +∞ ) )  =  ( ( 𝑥  ∈  𝐴  ↦  𝐶 )  ↾  ( 𝐷 [,) +∞ ) ) ) | 
						
							| 43 | 37 41 42 | mp2b | ⊢ ( ( ( 𝑥  ∈  𝐴  ↦  𝐶 )  ↾  𝐴 )  ↾  ( 𝐷 [,) +∞ ) )  =  ( ( 𝑥  ∈  𝐴  ↦  𝐶 )  ↾  ( 𝐷 [,) +∞ ) ) | 
						
							| 44 | 36 40 43 | 3eqtr3g | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ↾  ( 𝐷 [,) +∞ ) )  =  ( ( 𝑥  ∈  𝐴  ↦  𝐶 )  ↾  ( 𝐷 [,) +∞ ) ) ) | 
						
							| 45 | 44 | breq1d | ⊢ ( 𝜑  →  ( ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ↾  ( 𝐷 [,) +∞ ) )  ⇝𝑟  𝐸  ↔  ( ( 𝑥  ∈  𝐴  ↦  𝐶 )  ↾  ( 𝐷 [,) +∞ ) )  ⇝𝑟  𝐸 ) ) | 
						
							| 46 | 45 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ⊆  ℝ )  →  ( ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ↾  ( 𝐷 [,) +∞ ) )  ⇝𝑟  𝐸  ↔  ( ( 𝑥  ∈  𝐴  ↦  𝐶 )  ↾  ( 𝐷 [,) +∞ ) )  ⇝𝑟  𝐸 ) ) | 
						
							| 47 | 1 | fmpttd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 ) : 𝐴 ⟶ ℂ ) | 
						
							| 48 | 47 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ⊆  ℝ )  →  ( 𝑥  ∈  𝐴  ↦  𝐵 ) : 𝐴 ⟶ ℂ ) | 
						
							| 49 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐴  ⊆  ℝ )  →  𝐴  ⊆  ℝ ) | 
						
							| 50 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ⊆  ℝ )  →  𝐷  ∈  ℝ ) | 
						
							| 51 | 48 49 50 | rlimresb | ⊢ ( ( 𝜑  ∧  𝐴  ⊆  ℝ )  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ⇝𝑟  𝐸  ↔  ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ↾  ( 𝐷 [,) +∞ ) )  ⇝𝑟  𝐸 ) ) | 
						
							| 52 | 2 | fmpttd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐶 ) : 𝐴 ⟶ ℂ ) | 
						
							| 53 | 52 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ⊆  ℝ )  →  ( 𝑥  ∈  𝐴  ↦  𝐶 ) : 𝐴 ⟶ ℂ ) | 
						
							| 54 | 53 49 50 | rlimresb | ⊢ ( ( 𝜑  ∧  𝐴  ⊆  ℝ )  →  ( ( 𝑥  ∈  𝐴  ↦  𝐶 )  ⇝𝑟  𝐸  ↔  ( ( 𝑥  ∈  𝐴  ↦  𝐶 )  ↾  ( 𝐷 [,) +∞ ) )  ⇝𝑟  𝐸 ) ) | 
						
							| 55 | 46 51 54 | 3bitr4d | ⊢ ( ( 𝜑  ∧  𝐴  ⊆  ℝ )  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ⇝𝑟  𝐸  ↔  ( 𝑥  ∈  𝐴  ↦  𝐶 )  ⇝𝑟  𝐸 ) ) | 
						
							| 56 | 55 | ex | ⊢ ( 𝜑  →  ( 𝐴  ⊆  ℝ  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ⇝𝑟  𝐸  ↔  ( 𝑥  ∈  𝐴  ↦  𝐶 )  ⇝𝑟  𝐸 ) ) ) | 
						
							| 57 | 9 14 56 | pm5.21ndd | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ⇝𝑟  𝐸  ↔  ( 𝑥  ∈  𝐴  ↦  𝐶 )  ⇝𝑟  𝐸 ) ) |