| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0sqcl |  |-  ( X e. NN0 -> ( X ^ 2 ) e. NN0 ) | 
						
							| 2 | 1 | 3ad2ant3 |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN0 /\ X e. NN0 ) -> ( X ^ 2 ) e. NN0 ) | 
						
							| 3 | 2 | nn0cnd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN0 /\ X e. NN0 ) -> ( X ^ 2 ) e. CC ) | 
						
							| 4 |  | simp1 |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN0 /\ X e. NN0 ) -> A e. ( ZZ>= ` 2 ) ) | 
						
							| 5 |  | nn0z |  |-  ( N e. NN0 -> N e. ZZ ) | 
						
							| 6 | 5 | 3ad2ant2 |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN0 /\ X e. NN0 ) -> N e. ZZ ) | 
						
							| 7 |  | frmx |  |-  rmX : ( ( ZZ>= ` 2 ) X. ZZ ) --> NN0 | 
						
							| 8 | 7 | fovcl |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX N ) e. NN0 ) | 
						
							| 9 | 4 6 8 | syl2anc |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN0 /\ X e. NN0 ) -> ( A rmX N ) e. NN0 ) | 
						
							| 10 |  | nn0sqcl |  |-  ( ( A rmX N ) e. NN0 -> ( ( A rmX N ) ^ 2 ) e. NN0 ) | 
						
							| 11 | 9 10 | syl |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN0 /\ X e. NN0 ) -> ( ( A rmX N ) ^ 2 ) e. NN0 ) | 
						
							| 12 | 11 | nn0cnd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN0 /\ X e. NN0 ) -> ( ( A rmX N ) ^ 2 ) e. CC ) | 
						
							| 13 |  | rmspecnonsq |  |-  ( A e. ( ZZ>= ` 2 ) -> ( ( A ^ 2 ) - 1 ) e. ( NN \ []NN ) ) | 
						
							| 14 | 13 | eldifad |  |-  ( A e. ( ZZ>= ` 2 ) -> ( ( A ^ 2 ) - 1 ) e. NN ) | 
						
							| 15 | 14 | nnnn0d |  |-  ( A e. ( ZZ>= ` 2 ) -> ( ( A ^ 2 ) - 1 ) e. NN0 ) | 
						
							| 16 | 15 | 3ad2ant1 |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN0 /\ X e. NN0 ) -> ( ( A ^ 2 ) - 1 ) e. NN0 ) | 
						
							| 17 |  | rmynn0 |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> ( A rmY N ) e. NN0 ) | 
						
							| 18 | 17 | 3adant3 |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN0 /\ X e. NN0 ) -> ( A rmY N ) e. NN0 ) | 
						
							| 19 |  | nn0sqcl |  |-  ( ( A rmY N ) e. NN0 -> ( ( A rmY N ) ^ 2 ) e. NN0 ) | 
						
							| 20 | 18 19 | syl |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN0 /\ X e. NN0 ) -> ( ( A rmY N ) ^ 2 ) e. NN0 ) | 
						
							| 21 | 16 20 | nn0mulcld |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN0 /\ X e. NN0 ) -> ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) ^ 2 ) ) e. NN0 ) | 
						
							| 22 | 21 | nn0cnd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN0 /\ X e. NN0 ) -> ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) ^ 2 ) ) e. CC ) | 
						
							| 23 | 3 12 22 | subcan2ad |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN0 /\ X e. NN0 ) -> ( ( ( X ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) ^ 2 ) ) ) = ( ( ( A rmX N ) ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) ^ 2 ) ) ) <-> ( X ^ 2 ) = ( ( A rmX N ) ^ 2 ) ) ) | 
						
							| 24 |  | rmxynorm |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( ( A rmX N ) ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) ^ 2 ) ) ) = 1 ) | 
						
							| 25 | 4 6 24 | syl2anc |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN0 /\ X e. NN0 ) -> ( ( ( A rmX N ) ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) ^ 2 ) ) ) = 1 ) | 
						
							| 26 | 25 | eqeq2d |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN0 /\ X e. NN0 ) -> ( ( ( X ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) ^ 2 ) ) ) = ( ( ( A rmX N ) ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) ^ 2 ) ) ) <-> ( ( X ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) ^ 2 ) ) ) = 1 ) ) | 
						
							| 27 |  | nn0re |  |-  ( X e. NN0 -> X e. RR ) | 
						
							| 28 |  | nn0ge0 |  |-  ( X e. NN0 -> 0 <_ X ) | 
						
							| 29 | 27 28 | jca |  |-  ( X e. NN0 -> ( X e. RR /\ 0 <_ X ) ) | 
						
							| 30 | 29 | 3ad2ant3 |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN0 /\ X e. NN0 ) -> ( X e. RR /\ 0 <_ X ) ) | 
						
							| 31 |  | nn0re |  |-  ( ( A rmX N ) e. NN0 -> ( A rmX N ) e. RR ) | 
						
							| 32 |  | nn0ge0 |  |-  ( ( A rmX N ) e. NN0 -> 0 <_ ( A rmX N ) ) | 
						
							| 33 | 31 32 | jca |  |-  ( ( A rmX N ) e. NN0 -> ( ( A rmX N ) e. RR /\ 0 <_ ( A rmX N ) ) ) | 
						
							| 34 | 9 33 | syl |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN0 /\ X e. NN0 ) -> ( ( A rmX N ) e. RR /\ 0 <_ ( A rmX N ) ) ) | 
						
							| 35 |  | sq11 |  |-  ( ( ( X e. RR /\ 0 <_ X ) /\ ( ( A rmX N ) e. RR /\ 0 <_ ( A rmX N ) ) ) -> ( ( X ^ 2 ) = ( ( A rmX N ) ^ 2 ) <-> X = ( A rmX N ) ) ) | 
						
							| 36 | 30 34 35 | syl2anc |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN0 /\ X e. NN0 ) -> ( ( X ^ 2 ) = ( ( A rmX N ) ^ 2 ) <-> X = ( A rmX N ) ) ) | 
						
							| 37 | 23 26 36 | 3bitr3rd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN0 /\ X e. NN0 ) -> ( X = ( A rmX N ) <-> ( ( X ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) ^ 2 ) ) ) = 1 ) ) | 
						
							| 38 |  | oveq1 |  |-  ( y = ( A rmY N ) -> ( y ^ 2 ) = ( ( A rmY N ) ^ 2 ) ) | 
						
							| 39 | 38 | oveq2d |  |-  ( y = ( A rmY N ) -> ( ( ( A ^ 2 ) - 1 ) x. ( y ^ 2 ) ) = ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) ^ 2 ) ) ) | 
						
							| 40 | 39 | oveq2d |  |-  ( y = ( A rmY N ) -> ( ( X ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( y ^ 2 ) ) ) = ( ( X ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) ^ 2 ) ) ) ) | 
						
							| 41 | 40 | eqeq1d |  |-  ( y = ( A rmY N ) -> ( ( ( X ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( y ^ 2 ) ) ) = 1 <-> ( ( X ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) ^ 2 ) ) ) = 1 ) ) | 
						
							| 42 | 41 | ceqsrexv |  |-  ( ( A rmY N ) e. NN0 -> ( E. y e. NN0 ( y = ( A rmY N ) /\ ( ( X ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( y ^ 2 ) ) ) = 1 ) <-> ( ( X ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) ^ 2 ) ) ) = 1 ) ) | 
						
							| 43 | 18 42 | syl |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN0 /\ X e. NN0 ) -> ( E. y e. NN0 ( y = ( A rmY N ) /\ ( ( X ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( y ^ 2 ) ) ) = 1 ) <-> ( ( X ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) ^ 2 ) ) ) = 1 ) ) | 
						
							| 44 | 37 43 | bitr4d |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN0 /\ X e. NN0 ) -> ( X = ( A rmX N ) <-> E. y e. NN0 ( y = ( A rmY N ) /\ ( ( X ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( y ^ 2 ) ) ) = 1 ) ) ) |