Step |
Hyp |
Ref |
Expression |
1 |
|
nn0sqcl |
|- ( X e. NN0 -> ( X ^ 2 ) e. NN0 ) |
2 |
1
|
3ad2ant3 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN0 /\ X e. NN0 ) -> ( X ^ 2 ) e. NN0 ) |
3 |
2
|
nn0cnd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN0 /\ X e. NN0 ) -> ( X ^ 2 ) e. CC ) |
4 |
|
simp1 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN0 /\ X e. NN0 ) -> A e. ( ZZ>= ` 2 ) ) |
5 |
|
nn0z |
|- ( N e. NN0 -> N e. ZZ ) |
6 |
5
|
3ad2ant2 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN0 /\ X e. NN0 ) -> N e. ZZ ) |
7 |
|
frmx |
|- rmX : ( ( ZZ>= ` 2 ) X. ZZ ) --> NN0 |
8 |
7
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX N ) e. NN0 ) |
9 |
4 6 8
|
syl2anc |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN0 /\ X e. NN0 ) -> ( A rmX N ) e. NN0 ) |
10 |
|
nn0sqcl |
|- ( ( A rmX N ) e. NN0 -> ( ( A rmX N ) ^ 2 ) e. NN0 ) |
11 |
9 10
|
syl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN0 /\ X e. NN0 ) -> ( ( A rmX N ) ^ 2 ) e. NN0 ) |
12 |
11
|
nn0cnd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN0 /\ X e. NN0 ) -> ( ( A rmX N ) ^ 2 ) e. CC ) |
13 |
|
rmspecnonsq |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( A ^ 2 ) - 1 ) e. ( NN \ []NN ) ) |
14 |
13
|
eldifad |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( A ^ 2 ) - 1 ) e. NN ) |
15 |
14
|
nnnn0d |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( A ^ 2 ) - 1 ) e. NN0 ) |
16 |
15
|
3ad2ant1 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN0 /\ X e. NN0 ) -> ( ( A ^ 2 ) - 1 ) e. NN0 ) |
17 |
|
rmynn0 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> ( A rmY N ) e. NN0 ) |
18 |
17
|
3adant3 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN0 /\ X e. NN0 ) -> ( A rmY N ) e. NN0 ) |
19 |
|
nn0sqcl |
|- ( ( A rmY N ) e. NN0 -> ( ( A rmY N ) ^ 2 ) e. NN0 ) |
20 |
18 19
|
syl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN0 /\ X e. NN0 ) -> ( ( A rmY N ) ^ 2 ) e. NN0 ) |
21 |
16 20
|
nn0mulcld |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN0 /\ X e. NN0 ) -> ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) ^ 2 ) ) e. NN0 ) |
22 |
21
|
nn0cnd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN0 /\ X e. NN0 ) -> ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) ^ 2 ) ) e. CC ) |
23 |
3 12 22
|
subcan2ad |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN0 /\ X e. NN0 ) -> ( ( ( X ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) ^ 2 ) ) ) = ( ( ( A rmX N ) ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) ^ 2 ) ) ) <-> ( X ^ 2 ) = ( ( A rmX N ) ^ 2 ) ) ) |
24 |
|
rmxynorm |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( ( A rmX N ) ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) ^ 2 ) ) ) = 1 ) |
25 |
4 6 24
|
syl2anc |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN0 /\ X e. NN0 ) -> ( ( ( A rmX N ) ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) ^ 2 ) ) ) = 1 ) |
26 |
25
|
eqeq2d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN0 /\ X e. NN0 ) -> ( ( ( X ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) ^ 2 ) ) ) = ( ( ( A rmX N ) ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) ^ 2 ) ) ) <-> ( ( X ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) ^ 2 ) ) ) = 1 ) ) |
27 |
|
nn0re |
|- ( X e. NN0 -> X e. RR ) |
28 |
|
nn0ge0 |
|- ( X e. NN0 -> 0 <_ X ) |
29 |
27 28
|
jca |
|- ( X e. NN0 -> ( X e. RR /\ 0 <_ X ) ) |
30 |
29
|
3ad2ant3 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN0 /\ X e. NN0 ) -> ( X e. RR /\ 0 <_ X ) ) |
31 |
|
nn0re |
|- ( ( A rmX N ) e. NN0 -> ( A rmX N ) e. RR ) |
32 |
|
nn0ge0 |
|- ( ( A rmX N ) e. NN0 -> 0 <_ ( A rmX N ) ) |
33 |
31 32
|
jca |
|- ( ( A rmX N ) e. NN0 -> ( ( A rmX N ) e. RR /\ 0 <_ ( A rmX N ) ) ) |
34 |
9 33
|
syl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN0 /\ X e. NN0 ) -> ( ( A rmX N ) e. RR /\ 0 <_ ( A rmX N ) ) ) |
35 |
|
sq11 |
|- ( ( ( X e. RR /\ 0 <_ X ) /\ ( ( A rmX N ) e. RR /\ 0 <_ ( A rmX N ) ) ) -> ( ( X ^ 2 ) = ( ( A rmX N ) ^ 2 ) <-> X = ( A rmX N ) ) ) |
36 |
30 34 35
|
syl2anc |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN0 /\ X e. NN0 ) -> ( ( X ^ 2 ) = ( ( A rmX N ) ^ 2 ) <-> X = ( A rmX N ) ) ) |
37 |
23 26 36
|
3bitr3rd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN0 /\ X e. NN0 ) -> ( X = ( A rmX N ) <-> ( ( X ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) ^ 2 ) ) ) = 1 ) ) |
38 |
|
oveq1 |
|- ( y = ( A rmY N ) -> ( y ^ 2 ) = ( ( A rmY N ) ^ 2 ) ) |
39 |
38
|
oveq2d |
|- ( y = ( A rmY N ) -> ( ( ( A ^ 2 ) - 1 ) x. ( y ^ 2 ) ) = ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) ^ 2 ) ) ) |
40 |
39
|
oveq2d |
|- ( y = ( A rmY N ) -> ( ( X ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( y ^ 2 ) ) ) = ( ( X ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) ^ 2 ) ) ) ) |
41 |
40
|
eqeq1d |
|- ( y = ( A rmY N ) -> ( ( ( X ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( y ^ 2 ) ) ) = 1 <-> ( ( X ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) ^ 2 ) ) ) = 1 ) ) |
42 |
41
|
ceqsrexv |
|- ( ( A rmY N ) e. NN0 -> ( E. y e. NN0 ( y = ( A rmY N ) /\ ( ( X ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( y ^ 2 ) ) ) = 1 ) <-> ( ( X ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) ^ 2 ) ) ) = 1 ) ) |
43 |
18 42
|
syl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN0 /\ X e. NN0 ) -> ( E. y e. NN0 ( y = ( A rmY N ) /\ ( ( X ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( y ^ 2 ) ) ) = 1 ) <-> ( ( X ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) ^ 2 ) ) ) = 1 ) ) |
44 |
37 43
|
bitr4d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN0 /\ X e. NN0 ) -> ( X = ( A rmX N ) <-> E. y e. NN0 ( y = ( A rmY N ) /\ ( ( X ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( y ^ 2 ) ) ) = 1 ) ) ) |