| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
|- ( ( a e. ( NN0 ^m ( 1 ... 3 ) ) /\ ( a ` 1 ) e. ( ZZ>= ` 2 ) ) -> ( a ` 1 ) e. ( ZZ>= ` 2 ) ) |
| 2 |
|
elmapi |
|- ( a e. ( NN0 ^m ( 1 ... 3 ) ) -> a : ( 1 ... 3 ) --> NN0 ) |
| 3 |
|
df-3 |
|- 3 = ( 2 + 1 ) |
| 4 |
|
ssid |
|- ( 1 ... 3 ) C_ ( 1 ... 3 ) |
| 5 |
3 4
|
jm2.27dlem5 |
|- ( 1 ... 2 ) C_ ( 1 ... 3 ) |
| 6 |
|
2nn |
|- 2 e. NN |
| 7 |
6
|
jm2.27dlem3 |
|- 2 e. ( 1 ... 2 ) |
| 8 |
5 7
|
sselii |
|- 2 e. ( 1 ... 3 ) |
| 9 |
|
ffvelcdm |
|- ( ( a : ( 1 ... 3 ) --> NN0 /\ 2 e. ( 1 ... 3 ) ) -> ( a ` 2 ) e. NN0 ) |
| 10 |
2 8 9
|
sylancl |
|- ( a e. ( NN0 ^m ( 1 ... 3 ) ) -> ( a ` 2 ) e. NN0 ) |
| 11 |
10
|
adantr |
|- ( ( a e. ( NN0 ^m ( 1 ... 3 ) ) /\ ( a ` 1 ) e. ( ZZ>= ` 2 ) ) -> ( a ` 2 ) e. NN0 ) |
| 12 |
|
3nn |
|- 3 e. NN |
| 13 |
12
|
jm2.27dlem3 |
|- 3 e. ( 1 ... 3 ) |
| 14 |
|
ffvelcdm |
|- ( ( a : ( 1 ... 3 ) --> NN0 /\ 3 e. ( 1 ... 3 ) ) -> ( a ` 3 ) e. NN0 ) |
| 15 |
2 13 14
|
sylancl |
|- ( a e. ( NN0 ^m ( 1 ... 3 ) ) -> ( a ` 3 ) e. NN0 ) |
| 16 |
15
|
adantr |
|- ( ( a e. ( NN0 ^m ( 1 ... 3 ) ) /\ ( a ` 1 ) e. ( ZZ>= ` 2 ) ) -> ( a ` 3 ) e. NN0 ) |
| 17 |
|
rmxdiophlem |
|- ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN0 /\ ( a ` 3 ) e. NN0 ) -> ( ( a ` 3 ) = ( ( a ` 1 ) rmX ( a ` 2 ) ) <-> E. b e. NN0 ( b = ( ( a ` 1 ) rmY ( a ` 2 ) ) /\ ( ( ( a ` 3 ) ^ 2 ) - ( ( ( ( a ` 1 ) ^ 2 ) - 1 ) x. ( b ^ 2 ) ) ) = 1 ) ) ) |
| 18 |
1 11 16 17
|
syl3anc |
|- ( ( a e. ( NN0 ^m ( 1 ... 3 ) ) /\ ( a ` 1 ) e. ( ZZ>= ` 2 ) ) -> ( ( a ` 3 ) = ( ( a ` 1 ) rmX ( a ` 2 ) ) <-> E. b e. NN0 ( b = ( ( a ` 1 ) rmY ( a ` 2 ) ) /\ ( ( ( a ` 3 ) ^ 2 ) - ( ( ( ( a ` 1 ) ^ 2 ) - 1 ) x. ( b ^ 2 ) ) ) = 1 ) ) ) |
| 19 |
18
|
pm5.32da |
|- ( a e. ( NN0 ^m ( 1 ... 3 ) ) -> ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 3 ) = ( ( a ` 1 ) rmX ( a ` 2 ) ) ) <-> ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ E. b e. NN0 ( b = ( ( a ` 1 ) rmY ( a ` 2 ) ) /\ ( ( ( a ` 3 ) ^ 2 ) - ( ( ( ( a ` 1 ) ^ 2 ) - 1 ) x. ( b ^ 2 ) ) ) = 1 ) ) ) ) |
| 20 |
|
anass |
|- ( ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( a ` 2 ) ) ) /\ ( ( ( a ` 3 ) ^ 2 ) - ( ( ( ( a ` 1 ) ^ 2 ) - 1 ) x. ( b ^ 2 ) ) ) = 1 ) <-> ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( b = ( ( a ` 1 ) rmY ( a ` 2 ) ) /\ ( ( ( a ` 3 ) ^ 2 ) - ( ( ( ( a ` 1 ) ^ 2 ) - 1 ) x. ( b ^ 2 ) ) ) = 1 ) ) ) |
| 21 |
20
|
rexbii |
|- ( E. b e. NN0 ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( a ` 2 ) ) ) /\ ( ( ( a ` 3 ) ^ 2 ) - ( ( ( ( a ` 1 ) ^ 2 ) - 1 ) x. ( b ^ 2 ) ) ) = 1 ) <-> E. b e. NN0 ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( b = ( ( a ` 1 ) rmY ( a ` 2 ) ) /\ ( ( ( a ` 3 ) ^ 2 ) - ( ( ( ( a ` 1 ) ^ 2 ) - 1 ) x. ( b ^ 2 ) ) ) = 1 ) ) ) |
| 22 |
|
r19.42v |
|- ( E. b e. NN0 ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( b = ( ( a ` 1 ) rmY ( a ` 2 ) ) /\ ( ( ( a ` 3 ) ^ 2 ) - ( ( ( ( a ` 1 ) ^ 2 ) - 1 ) x. ( b ^ 2 ) ) ) = 1 ) ) <-> ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ E. b e. NN0 ( b = ( ( a ` 1 ) rmY ( a ` 2 ) ) /\ ( ( ( a ` 3 ) ^ 2 ) - ( ( ( ( a ` 1 ) ^ 2 ) - 1 ) x. ( b ^ 2 ) ) ) = 1 ) ) ) |
| 23 |
21 22
|
bitr2i |
|- ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ E. b e. NN0 ( b = ( ( a ` 1 ) rmY ( a ` 2 ) ) /\ ( ( ( a ` 3 ) ^ 2 ) - ( ( ( ( a ` 1 ) ^ 2 ) - 1 ) x. ( b ^ 2 ) ) ) = 1 ) ) <-> E. b e. NN0 ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( a ` 2 ) ) ) /\ ( ( ( a ` 3 ) ^ 2 ) - ( ( ( ( a ` 1 ) ^ 2 ) - 1 ) x. ( b ^ 2 ) ) ) = 1 ) ) |
| 24 |
19 23
|
bitrdi |
|- ( a e. ( NN0 ^m ( 1 ... 3 ) ) -> ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 3 ) = ( ( a ` 1 ) rmX ( a ` 2 ) ) ) <-> E. b e. NN0 ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( a ` 2 ) ) ) /\ ( ( ( a ` 3 ) ^ 2 ) - ( ( ( ( a ` 1 ) ^ 2 ) - 1 ) x. ( b ^ 2 ) ) ) = 1 ) ) ) |
| 25 |
24
|
rabbiia |
|- { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 3 ) = ( ( a ` 1 ) rmX ( a ` 2 ) ) ) } = { a e. ( NN0 ^m ( 1 ... 3 ) ) | E. b e. NN0 ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( a ` 2 ) ) ) /\ ( ( ( a ` 3 ) ^ 2 ) - ( ( ( ( a ` 1 ) ^ 2 ) - 1 ) x. ( b ^ 2 ) ) ) = 1 ) } |
| 26 |
|
3nn0 |
|- 3 e. NN0 |
| 27 |
|
vex |
|- c e. _V |
| 28 |
27
|
resex |
|- ( c |` ( 1 ... 3 ) ) e. _V |
| 29 |
|
fvex |
|- ( c ` 4 ) e. _V |
| 30 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
| 31 |
30 5
|
jm2.27dlem5 |
|- ( 1 ... 1 ) C_ ( 1 ... 3 ) |
| 32 |
|
1nn |
|- 1 e. NN |
| 33 |
32
|
jm2.27dlem3 |
|- 1 e. ( 1 ... 1 ) |
| 34 |
31 33
|
sselii |
|- 1 e. ( 1 ... 3 ) |
| 35 |
34
|
jm2.27dlem1 |
|- ( a = ( c |` ( 1 ... 3 ) ) -> ( a ` 1 ) = ( c ` 1 ) ) |
| 36 |
35
|
eleq1d |
|- ( a = ( c |` ( 1 ... 3 ) ) -> ( ( a ` 1 ) e. ( ZZ>= ` 2 ) <-> ( c ` 1 ) e. ( ZZ>= ` 2 ) ) ) |
| 37 |
36
|
adantr |
|- ( ( a = ( c |` ( 1 ... 3 ) ) /\ b = ( c ` 4 ) ) -> ( ( a ` 1 ) e. ( ZZ>= ` 2 ) <-> ( c ` 1 ) e. ( ZZ>= ` 2 ) ) ) |
| 38 |
|
simpr |
|- ( ( a = ( c |` ( 1 ... 3 ) ) /\ b = ( c ` 4 ) ) -> b = ( c ` 4 ) ) |
| 39 |
8
|
jm2.27dlem1 |
|- ( a = ( c |` ( 1 ... 3 ) ) -> ( a ` 2 ) = ( c ` 2 ) ) |
| 40 |
35 39
|
oveq12d |
|- ( a = ( c |` ( 1 ... 3 ) ) -> ( ( a ` 1 ) rmY ( a ` 2 ) ) = ( ( c ` 1 ) rmY ( c ` 2 ) ) ) |
| 41 |
40
|
adantr |
|- ( ( a = ( c |` ( 1 ... 3 ) ) /\ b = ( c ` 4 ) ) -> ( ( a ` 1 ) rmY ( a ` 2 ) ) = ( ( c ` 1 ) rmY ( c ` 2 ) ) ) |
| 42 |
38 41
|
eqeq12d |
|- ( ( a = ( c |` ( 1 ... 3 ) ) /\ b = ( c ` 4 ) ) -> ( b = ( ( a ` 1 ) rmY ( a ` 2 ) ) <-> ( c ` 4 ) = ( ( c ` 1 ) rmY ( c ` 2 ) ) ) ) |
| 43 |
37 42
|
anbi12d |
|- ( ( a = ( c |` ( 1 ... 3 ) ) /\ b = ( c ` 4 ) ) -> ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( a ` 2 ) ) ) <-> ( ( c ` 1 ) e. ( ZZ>= ` 2 ) /\ ( c ` 4 ) = ( ( c ` 1 ) rmY ( c ` 2 ) ) ) ) ) |
| 44 |
13
|
jm2.27dlem1 |
|- ( a = ( c |` ( 1 ... 3 ) ) -> ( a ` 3 ) = ( c ` 3 ) ) |
| 45 |
44
|
oveq1d |
|- ( a = ( c |` ( 1 ... 3 ) ) -> ( ( a ` 3 ) ^ 2 ) = ( ( c ` 3 ) ^ 2 ) ) |
| 46 |
45
|
adantr |
|- ( ( a = ( c |` ( 1 ... 3 ) ) /\ b = ( c ` 4 ) ) -> ( ( a ` 3 ) ^ 2 ) = ( ( c ` 3 ) ^ 2 ) ) |
| 47 |
35
|
oveq1d |
|- ( a = ( c |` ( 1 ... 3 ) ) -> ( ( a ` 1 ) ^ 2 ) = ( ( c ` 1 ) ^ 2 ) ) |
| 48 |
47
|
oveq1d |
|- ( a = ( c |` ( 1 ... 3 ) ) -> ( ( ( a ` 1 ) ^ 2 ) - 1 ) = ( ( ( c ` 1 ) ^ 2 ) - 1 ) ) |
| 49 |
|
oveq1 |
|- ( b = ( c ` 4 ) -> ( b ^ 2 ) = ( ( c ` 4 ) ^ 2 ) ) |
| 50 |
48 49
|
oveqan12d |
|- ( ( a = ( c |` ( 1 ... 3 ) ) /\ b = ( c ` 4 ) ) -> ( ( ( ( a ` 1 ) ^ 2 ) - 1 ) x. ( b ^ 2 ) ) = ( ( ( ( c ` 1 ) ^ 2 ) - 1 ) x. ( ( c ` 4 ) ^ 2 ) ) ) |
| 51 |
46 50
|
oveq12d |
|- ( ( a = ( c |` ( 1 ... 3 ) ) /\ b = ( c ` 4 ) ) -> ( ( ( a ` 3 ) ^ 2 ) - ( ( ( ( a ` 1 ) ^ 2 ) - 1 ) x. ( b ^ 2 ) ) ) = ( ( ( c ` 3 ) ^ 2 ) - ( ( ( ( c ` 1 ) ^ 2 ) - 1 ) x. ( ( c ` 4 ) ^ 2 ) ) ) ) |
| 52 |
51
|
eqeq1d |
|- ( ( a = ( c |` ( 1 ... 3 ) ) /\ b = ( c ` 4 ) ) -> ( ( ( ( a ` 3 ) ^ 2 ) - ( ( ( ( a ` 1 ) ^ 2 ) - 1 ) x. ( b ^ 2 ) ) ) = 1 <-> ( ( ( c ` 3 ) ^ 2 ) - ( ( ( ( c ` 1 ) ^ 2 ) - 1 ) x. ( ( c ` 4 ) ^ 2 ) ) ) = 1 ) ) |
| 53 |
43 52
|
anbi12d |
|- ( ( a = ( c |` ( 1 ... 3 ) ) /\ b = ( c ` 4 ) ) -> ( ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( a ` 2 ) ) ) /\ ( ( ( a ` 3 ) ^ 2 ) - ( ( ( ( a ` 1 ) ^ 2 ) - 1 ) x. ( b ^ 2 ) ) ) = 1 ) <-> ( ( ( c ` 1 ) e. ( ZZ>= ` 2 ) /\ ( c ` 4 ) = ( ( c ` 1 ) rmY ( c ` 2 ) ) ) /\ ( ( ( c ` 3 ) ^ 2 ) - ( ( ( ( c ` 1 ) ^ 2 ) - 1 ) x. ( ( c ` 4 ) ^ 2 ) ) ) = 1 ) ) ) |
| 54 |
28 29 53
|
sbc2ie |
|- ( [. ( c |` ( 1 ... 3 ) ) / a ]. [. ( c ` 4 ) / b ]. ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( a ` 2 ) ) ) /\ ( ( ( a ` 3 ) ^ 2 ) - ( ( ( ( a ` 1 ) ^ 2 ) - 1 ) x. ( b ^ 2 ) ) ) = 1 ) <-> ( ( ( c ` 1 ) e. ( ZZ>= ` 2 ) /\ ( c ` 4 ) = ( ( c ` 1 ) rmY ( c ` 2 ) ) ) /\ ( ( ( c ` 3 ) ^ 2 ) - ( ( ( ( c ` 1 ) ^ 2 ) - 1 ) x. ( ( c ` 4 ) ^ 2 ) ) ) = 1 ) ) |
| 55 |
54
|
rabbii |
|- { c e. ( NN0 ^m ( 1 ... 4 ) ) | [. ( c |` ( 1 ... 3 ) ) / a ]. [. ( c ` 4 ) / b ]. ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( a ` 2 ) ) ) /\ ( ( ( a ` 3 ) ^ 2 ) - ( ( ( ( a ` 1 ) ^ 2 ) - 1 ) x. ( b ^ 2 ) ) ) = 1 ) } = { c e. ( NN0 ^m ( 1 ... 4 ) ) | ( ( ( c ` 1 ) e. ( ZZ>= ` 2 ) /\ ( c ` 4 ) = ( ( c ` 1 ) rmY ( c ` 2 ) ) ) /\ ( ( ( c ` 3 ) ^ 2 ) - ( ( ( ( c ` 1 ) ^ 2 ) - 1 ) x. ( ( c ` 4 ) ^ 2 ) ) ) = 1 ) } |
| 56 |
|
4nn0 |
|- 4 e. NN0 |
| 57 |
|
rmydioph |
|- { b e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( b ` 1 ) e. ( ZZ>= ` 2 ) /\ ( b ` 3 ) = ( ( b ` 1 ) rmY ( b ` 2 ) ) ) } e. ( Dioph ` 3 ) |
| 58 |
|
simp1 |
|- ( ( ( b ` 1 ) = ( c ` 1 ) /\ ( b ` 2 ) = ( c ` 2 ) /\ ( b ` 3 ) = ( c ` 4 ) ) -> ( b ` 1 ) = ( c ` 1 ) ) |
| 59 |
58
|
eleq1d |
|- ( ( ( b ` 1 ) = ( c ` 1 ) /\ ( b ` 2 ) = ( c ` 2 ) /\ ( b ` 3 ) = ( c ` 4 ) ) -> ( ( b ` 1 ) e. ( ZZ>= ` 2 ) <-> ( c ` 1 ) e. ( ZZ>= ` 2 ) ) ) |
| 60 |
|
simp3 |
|- ( ( ( b ` 1 ) = ( c ` 1 ) /\ ( b ` 2 ) = ( c ` 2 ) /\ ( b ` 3 ) = ( c ` 4 ) ) -> ( b ` 3 ) = ( c ` 4 ) ) |
| 61 |
|
simp2 |
|- ( ( ( b ` 1 ) = ( c ` 1 ) /\ ( b ` 2 ) = ( c ` 2 ) /\ ( b ` 3 ) = ( c ` 4 ) ) -> ( b ` 2 ) = ( c ` 2 ) ) |
| 62 |
58 61
|
oveq12d |
|- ( ( ( b ` 1 ) = ( c ` 1 ) /\ ( b ` 2 ) = ( c ` 2 ) /\ ( b ` 3 ) = ( c ` 4 ) ) -> ( ( b ` 1 ) rmY ( b ` 2 ) ) = ( ( c ` 1 ) rmY ( c ` 2 ) ) ) |
| 63 |
60 62
|
eqeq12d |
|- ( ( ( b ` 1 ) = ( c ` 1 ) /\ ( b ` 2 ) = ( c ` 2 ) /\ ( b ` 3 ) = ( c ` 4 ) ) -> ( ( b ` 3 ) = ( ( b ` 1 ) rmY ( b ` 2 ) ) <-> ( c ` 4 ) = ( ( c ` 1 ) rmY ( c ` 2 ) ) ) ) |
| 64 |
59 63
|
anbi12d |
|- ( ( ( b ` 1 ) = ( c ` 1 ) /\ ( b ` 2 ) = ( c ` 2 ) /\ ( b ` 3 ) = ( c ` 4 ) ) -> ( ( ( b ` 1 ) e. ( ZZ>= ` 2 ) /\ ( b ` 3 ) = ( ( b ` 1 ) rmY ( b ` 2 ) ) ) <-> ( ( c ` 1 ) e. ( ZZ>= ` 2 ) /\ ( c ` 4 ) = ( ( c ` 1 ) rmY ( c ` 2 ) ) ) ) ) |
| 65 |
|
df-4 |
|- 4 = ( 3 + 1 ) |
| 66 |
|
ssid |
|- ( 1 ... 4 ) C_ ( 1 ... 4 ) |
| 67 |
65 66
|
jm2.27dlem5 |
|- ( 1 ... 3 ) C_ ( 1 ... 4 ) |
| 68 |
3 67
|
jm2.27dlem5 |
|- ( 1 ... 2 ) C_ ( 1 ... 4 ) |
| 69 |
30 68
|
jm2.27dlem5 |
|- ( 1 ... 1 ) C_ ( 1 ... 4 ) |
| 70 |
69 33
|
sselii |
|- 1 e. ( 1 ... 4 ) |
| 71 |
68 7
|
sselii |
|- 2 e. ( 1 ... 4 ) |
| 72 |
|
4nn |
|- 4 e. NN |
| 73 |
72
|
jm2.27dlem3 |
|- 4 e. ( 1 ... 4 ) |
| 74 |
64 70 71 73
|
rabren3dioph |
|- ( ( 4 e. NN0 /\ { b e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( b ` 1 ) e. ( ZZ>= ` 2 ) /\ ( b ` 3 ) = ( ( b ` 1 ) rmY ( b ` 2 ) ) ) } e. ( Dioph ` 3 ) ) -> { c e. ( NN0 ^m ( 1 ... 4 ) ) | ( ( c ` 1 ) e. ( ZZ>= ` 2 ) /\ ( c ` 4 ) = ( ( c ` 1 ) rmY ( c ` 2 ) ) ) } e. ( Dioph ` 4 ) ) |
| 75 |
56 57 74
|
mp2an |
|- { c e. ( NN0 ^m ( 1 ... 4 ) ) | ( ( c ` 1 ) e. ( ZZ>= ` 2 ) /\ ( c ` 4 ) = ( ( c ` 1 ) rmY ( c ` 2 ) ) ) } e. ( Dioph ` 4 ) |
| 76 |
|
ovex |
|- ( 1 ... 4 ) e. _V |
| 77 |
67 13
|
sselii |
|- 3 e. ( 1 ... 4 ) |
| 78 |
|
mzpproj |
|- ( ( ( 1 ... 4 ) e. _V /\ 3 e. ( 1 ... 4 ) ) -> ( c e. ( ZZ ^m ( 1 ... 4 ) ) |-> ( c ` 3 ) ) e. ( mzPoly ` ( 1 ... 4 ) ) ) |
| 79 |
76 77 78
|
mp2an |
|- ( c e. ( ZZ ^m ( 1 ... 4 ) ) |-> ( c ` 3 ) ) e. ( mzPoly ` ( 1 ... 4 ) ) |
| 80 |
|
2nn0 |
|- 2 e. NN0 |
| 81 |
|
mzpexpmpt |
|- ( ( ( c e. ( ZZ ^m ( 1 ... 4 ) ) |-> ( c ` 3 ) ) e. ( mzPoly ` ( 1 ... 4 ) ) /\ 2 e. NN0 ) -> ( c e. ( ZZ ^m ( 1 ... 4 ) ) |-> ( ( c ` 3 ) ^ 2 ) ) e. ( mzPoly ` ( 1 ... 4 ) ) ) |
| 82 |
79 80 81
|
mp2an |
|- ( c e. ( ZZ ^m ( 1 ... 4 ) ) |-> ( ( c ` 3 ) ^ 2 ) ) e. ( mzPoly ` ( 1 ... 4 ) ) |
| 83 |
|
mzpproj |
|- ( ( ( 1 ... 4 ) e. _V /\ 1 e. ( 1 ... 4 ) ) -> ( c e. ( ZZ ^m ( 1 ... 4 ) ) |-> ( c ` 1 ) ) e. ( mzPoly ` ( 1 ... 4 ) ) ) |
| 84 |
76 70 83
|
mp2an |
|- ( c e. ( ZZ ^m ( 1 ... 4 ) ) |-> ( c ` 1 ) ) e. ( mzPoly ` ( 1 ... 4 ) ) |
| 85 |
|
mzpexpmpt |
|- ( ( ( c e. ( ZZ ^m ( 1 ... 4 ) ) |-> ( c ` 1 ) ) e. ( mzPoly ` ( 1 ... 4 ) ) /\ 2 e. NN0 ) -> ( c e. ( ZZ ^m ( 1 ... 4 ) ) |-> ( ( c ` 1 ) ^ 2 ) ) e. ( mzPoly ` ( 1 ... 4 ) ) ) |
| 86 |
84 80 85
|
mp2an |
|- ( c e. ( ZZ ^m ( 1 ... 4 ) ) |-> ( ( c ` 1 ) ^ 2 ) ) e. ( mzPoly ` ( 1 ... 4 ) ) |
| 87 |
|
1z |
|- 1 e. ZZ |
| 88 |
|
mzpconstmpt |
|- ( ( ( 1 ... 4 ) e. _V /\ 1 e. ZZ ) -> ( c e. ( ZZ ^m ( 1 ... 4 ) ) |-> 1 ) e. ( mzPoly ` ( 1 ... 4 ) ) ) |
| 89 |
76 87 88
|
mp2an |
|- ( c e. ( ZZ ^m ( 1 ... 4 ) ) |-> 1 ) e. ( mzPoly ` ( 1 ... 4 ) ) |
| 90 |
|
mzpsubmpt |
|- ( ( ( c e. ( ZZ ^m ( 1 ... 4 ) ) |-> ( ( c ` 1 ) ^ 2 ) ) e. ( mzPoly ` ( 1 ... 4 ) ) /\ ( c e. ( ZZ ^m ( 1 ... 4 ) ) |-> 1 ) e. ( mzPoly ` ( 1 ... 4 ) ) ) -> ( c e. ( ZZ ^m ( 1 ... 4 ) ) |-> ( ( ( c ` 1 ) ^ 2 ) - 1 ) ) e. ( mzPoly ` ( 1 ... 4 ) ) ) |
| 91 |
86 89 90
|
mp2an |
|- ( c e. ( ZZ ^m ( 1 ... 4 ) ) |-> ( ( ( c ` 1 ) ^ 2 ) - 1 ) ) e. ( mzPoly ` ( 1 ... 4 ) ) |
| 92 |
|
mzpproj |
|- ( ( ( 1 ... 4 ) e. _V /\ 4 e. ( 1 ... 4 ) ) -> ( c e. ( ZZ ^m ( 1 ... 4 ) ) |-> ( c ` 4 ) ) e. ( mzPoly ` ( 1 ... 4 ) ) ) |
| 93 |
76 73 92
|
mp2an |
|- ( c e. ( ZZ ^m ( 1 ... 4 ) ) |-> ( c ` 4 ) ) e. ( mzPoly ` ( 1 ... 4 ) ) |
| 94 |
|
mzpexpmpt |
|- ( ( ( c e. ( ZZ ^m ( 1 ... 4 ) ) |-> ( c ` 4 ) ) e. ( mzPoly ` ( 1 ... 4 ) ) /\ 2 e. NN0 ) -> ( c e. ( ZZ ^m ( 1 ... 4 ) ) |-> ( ( c ` 4 ) ^ 2 ) ) e. ( mzPoly ` ( 1 ... 4 ) ) ) |
| 95 |
93 80 94
|
mp2an |
|- ( c e. ( ZZ ^m ( 1 ... 4 ) ) |-> ( ( c ` 4 ) ^ 2 ) ) e. ( mzPoly ` ( 1 ... 4 ) ) |
| 96 |
|
mzpmulmpt |
|- ( ( ( c e. ( ZZ ^m ( 1 ... 4 ) ) |-> ( ( ( c ` 1 ) ^ 2 ) - 1 ) ) e. ( mzPoly ` ( 1 ... 4 ) ) /\ ( c e. ( ZZ ^m ( 1 ... 4 ) ) |-> ( ( c ` 4 ) ^ 2 ) ) e. ( mzPoly ` ( 1 ... 4 ) ) ) -> ( c e. ( ZZ ^m ( 1 ... 4 ) ) |-> ( ( ( ( c ` 1 ) ^ 2 ) - 1 ) x. ( ( c ` 4 ) ^ 2 ) ) ) e. ( mzPoly ` ( 1 ... 4 ) ) ) |
| 97 |
91 95 96
|
mp2an |
|- ( c e. ( ZZ ^m ( 1 ... 4 ) ) |-> ( ( ( ( c ` 1 ) ^ 2 ) - 1 ) x. ( ( c ` 4 ) ^ 2 ) ) ) e. ( mzPoly ` ( 1 ... 4 ) ) |
| 98 |
|
mzpsubmpt |
|- ( ( ( c e. ( ZZ ^m ( 1 ... 4 ) ) |-> ( ( c ` 3 ) ^ 2 ) ) e. ( mzPoly ` ( 1 ... 4 ) ) /\ ( c e. ( ZZ ^m ( 1 ... 4 ) ) |-> ( ( ( ( c ` 1 ) ^ 2 ) - 1 ) x. ( ( c ` 4 ) ^ 2 ) ) ) e. ( mzPoly ` ( 1 ... 4 ) ) ) -> ( c e. ( ZZ ^m ( 1 ... 4 ) ) |-> ( ( ( c ` 3 ) ^ 2 ) - ( ( ( ( c ` 1 ) ^ 2 ) - 1 ) x. ( ( c ` 4 ) ^ 2 ) ) ) ) e. ( mzPoly ` ( 1 ... 4 ) ) ) |
| 99 |
82 97 98
|
mp2an |
|- ( c e. ( ZZ ^m ( 1 ... 4 ) ) |-> ( ( ( c ` 3 ) ^ 2 ) - ( ( ( ( c ` 1 ) ^ 2 ) - 1 ) x. ( ( c ` 4 ) ^ 2 ) ) ) ) e. ( mzPoly ` ( 1 ... 4 ) ) |
| 100 |
|
eqrabdioph |
|- ( ( 4 e. NN0 /\ ( c e. ( ZZ ^m ( 1 ... 4 ) ) |-> ( ( ( c ` 3 ) ^ 2 ) - ( ( ( ( c ` 1 ) ^ 2 ) - 1 ) x. ( ( c ` 4 ) ^ 2 ) ) ) ) e. ( mzPoly ` ( 1 ... 4 ) ) /\ ( c e. ( ZZ ^m ( 1 ... 4 ) ) |-> 1 ) e. ( mzPoly ` ( 1 ... 4 ) ) ) -> { c e. ( NN0 ^m ( 1 ... 4 ) ) | ( ( ( c ` 3 ) ^ 2 ) - ( ( ( ( c ` 1 ) ^ 2 ) - 1 ) x. ( ( c ` 4 ) ^ 2 ) ) ) = 1 } e. ( Dioph ` 4 ) ) |
| 101 |
56 99 89 100
|
mp3an |
|- { c e. ( NN0 ^m ( 1 ... 4 ) ) | ( ( ( c ` 3 ) ^ 2 ) - ( ( ( ( c ` 1 ) ^ 2 ) - 1 ) x. ( ( c ` 4 ) ^ 2 ) ) ) = 1 } e. ( Dioph ` 4 ) |
| 102 |
|
anrabdioph |
|- ( ( { c e. ( NN0 ^m ( 1 ... 4 ) ) | ( ( c ` 1 ) e. ( ZZ>= ` 2 ) /\ ( c ` 4 ) = ( ( c ` 1 ) rmY ( c ` 2 ) ) ) } e. ( Dioph ` 4 ) /\ { c e. ( NN0 ^m ( 1 ... 4 ) ) | ( ( ( c ` 3 ) ^ 2 ) - ( ( ( ( c ` 1 ) ^ 2 ) - 1 ) x. ( ( c ` 4 ) ^ 2 ) ) ) = 1 } e. ( Dioph ` 4 ) ) -> { c e. ( NN0 ^m ( 1 ... 4 ) ) | ( ( ( c ` 1 ) e. ( ZZ>= ` 2 ) /\ ( c ` 4 ) = ( ( c ` 1 ) rmY ( c ` 2 ) ) ) /\ ( ( ( c ` 3 ) ^ 2 ) - ( ( ( ( c ` 1 ) ^ 2 ) - 1 ) x. ( ( c ` 4 ) ^ 2 ) ) ) = 1 ) } e. ( Dioph ` 4 ) ) |
| 103 |
75 101 102
|
mp2an |
|- { c e. ( NN0 ^m ( 1 ... 4 ) ) | ( ( ( c ` 1 ) e. ( ZZ>= ` 2 ) /\ ( c ` 4 ) = ( ( c ` 1 ) rmY ( c ` 2 ) ) ) /\ ( ( ( c ` 3 ) ^ 2 ) - ( ( ( ( c ` 1 ) ^ 2 ) - 1 ) x. ( ( c ` 4 ) ^ 2 ) ) ) = 1 ) } e. ( Dioph ` 4 ) |
| 104 |
55 103
|
eqeltri |
|- { c e. ( NN0 ^m ( 1 ... 4 ) ) | [. ( c |` ( 1 ... 3 ) ) / a ]. [. ( c ` 4 ) / b ]. ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( a ` 2 ) ) ) /\ ( ( ( a ` 3 ) ^ 2 ) - ( ( ( ( a ` 1 ) ^ 2 ) - 1 ) x. ( b ^ 2 ) ) ) = 1 ) } e. ( Dioph ` 4 ) |
| 105 |
65
|
rexfrabdioph |
|- ( ( 3 e. NN0 /\ { c e. ( NN0 ^m ( 1 ... 4 ) ) | [. ( c |` ( 1 ... 3 ) ) / a ]. [. ( c ` 4 ) / b ]. ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( a ` 2 ) ) ) /\ ( ( ( a ` 3 ) ^ 2 ) - ( ( ( ( a ` 1 ) ^ 2 ) - 1 ) x. ( b ^ 2 ) ) ) = 1 ) } e. ( Dioph ` 4 ) ) -> { a e. ( NN0 ^m ( 1 ... 3 ) ) | E. b e. NN0 ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( a ` 2 ) ) ) /\ ( ( ( a ` 3 ) ^ 2 ) - ( ( ( ( a ` 1 ) ^ 2 ) - 1 ) x. ( b ^ 2 ) ) ) = 1 ) } e. ( Dioph ` 3 ) ) |
| 106 |
26 104 105
|
mp2an |
|- { a e. ( NN0 ^m ( 1 ... 3 ) ) | E. b e. NN0 ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( a ` 2 ) ) ) /\ ( ( ( a ` 3 ) ^ 2 ) - ( ( ( ( a ` 1 ) ^ 2 ) - 1 ) x. ( b ^ 2 ) ) ) = 1 ) } e. ( Dioph ` 3 ) |
| 107 |
25 106
|
eqeltri |
|- { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 3 ) = ( ( a ` 1 ) rmX ( a ` 2 ) ) ) } e. ( Dioph ` 3 ) |