Metamath Proof Explorer


Theorem rmxdioph

Description: X is a Diophantine function. (Contributed by Stefan O'Rear, 17-Oct-2014)

Ref Expression
Assertion rmxdioph { 𝑎 ∈ ( ℕ0m ( 1 ... 3 ) ) ∣ ( ( 𝑎 ‘ 1 ) ∈ ( ℤ ‘ 2 ) ∧ ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) Xrm ( 𝑎 ‘ 2 ) ) ) } ∈ ( Dioph ‘ 3 )

Proof

Step Hyp Ref Expression
1 simpr ( ( 𝑎 ∈ ( ℕ0m ( 1 ... 3 ) ) ∧ ( 𝑎 ‘ 1 ) ∈ ( ℤ ‘ 2 ) ) → ( 𝑎 ‘ 1 ) ∈ ( ℤ ‘ 2 ) )
2 elmapi ( 𝑎 ∈ ( ℕ0m ( 1 ... 3 ) ) → 𝑎 : ( 1 ... 3 ) ⟶ ℕ0 )
3 df-3 3 = ( 2 + 1 )
4 ssid ( 1 ... 3 ) ⊆ ( 1 ... 3 )
5 3 4 jm2.27dlem5 ( 1 ... 2 ) ⊆ ( 1 ... 3 )
6 2nn 2 ∈ ℕ
7 6 jm2.27dlem3 2 ∈ ( 1 ... 2 )
8 5 7 sselii 2 ∈ ( 1 ... 3 )
9 ffvelrn ( ( 𝑎 : ( 1 ... 3 ) ⟶ ℕ0 ∧ 2 ∈ ( 1 ... 3 ) ) → ( 𝑎 ‘ 2 ) ∈ ℕ0 )
10 2 8 9 sylancl ( 𝑎 ∈ ( ℕ0m ( 1 ... 3 ) ) → ( 𝑎 ‘ 2 ) ∈ ℕ0 )
11 10 adantr ( ( 𝑎 ∈ ( ℕ0m ( 1 ... 3 ) ) ∧ ( 𝑎 ‘ 1 ) ∈ ( ℤ ‘ 2 ) ) → ( 𝑎 ‘ 2 ) ∈ ℕ0 )
12 3nn 3 ∈ ℕ
13 12 jm2.27dlem3 3 ∈ ( 1 ... 3 )
14 ffvelrn ( ( 𝑎 : ( 1 ... 3 ) ⟶ ℕ0 ∧ 3 ∈ ( 1 ... 3 ) ) → ( 𝑎 ‘ 3 ) ∈ ℕ0 )
15 2 13 14 sylancl ( 𝑎 ∈ ( ℕ0m ( 1 ... 3 ) ) → ( 𝑎 ‘ 3 ) ∈ ℕ0 )
16 15 adantr ( ( 𝑎 ∈ ( ℕ0m ( 1 ... 3 ) ) ∧ ( 𝑎 ‘ 1 ) ∈ ( ℤ ‘ 2 ) ) → ( 𝑎 ‘ 3 ) ∈ ℕ0 )
17 rmxdiophlem ( ( ( 𝑎 ‘ 1 ) ∈ ( ℤ ‘ 2 ) ∧ ( 𝑎 ‘ 2 ) ∈ ℕ0 ∧ ( 𝑎 ‘ 3 ) ∈ ℕ0 ) → ( ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) Xrm ( 𝑎 ‘ 2 ) ) ↔ ∃ 𝑏 ∈ ℕ0 ( 𝑏 = ( ( 𝑎 ‘ 1 ) Yrm ( 𝑎 ‘ 2 ) ) ∧ ( ( ( 𝑎 ‘ 3 ) ↑ 2 ) − ( ( ( ( 𝑎 ‘ 1 ) ↑ 2 ) − 1 ) · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) )
18 1 11 16 17 syl3anc ( ( 𝑎 ∈ ( ℕ0m ( 1 ... 3 ) ) ∧ ( 𝑎 ‘ 1 ) ∈ ( ℤ ‘ 2 ) ) → ( ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) Xrm ( 𝑎 ‘ 2 ) ) ↔ ∃ 𝑏 ∈ ℕ0 ( 𝑏 = ( ( 𝑎 ‘ 1 ) Yrm ( 𝑎 ‘ 2 ) ) ∧ ( ( ( 𝑎 ‘ 3 ) ↑ 2 ) − ( ( ( ( 𝑎 ‘ 1 ) ↑ 2 ) − 1 ) · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) )
19 18 pm5.32da ( 𝑎 ∈ ( ℕ0m ( 1 ... 3 ) ) → ( ( ( 𝑎 ‘ 1 ) ∈ ( ℤ ‘ 2 ) ∧ ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) Xrm ( 𝑎 ‘ 2 ) ) ) ↔ ( ( 𝑎 ‘ 1 ) ∈ ( ℤ ‘ 2 ) ∧ ∃ 𝑏 ∈ ℕ0 ( 𝑏 = ( ( 𝑎 ‘ 1 ) Yrm ( 𝑎 ‘ 2 ) ) ∧ ( ( ( 𝑎 ‘ 3 ) ↑ 2 ) − ( ( ( ( 𝑎 ‘ 1 ) ↑ 2 ) − 1 ) · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ) )
20 anass ( ( ( ( 𝑎 ‘ 1 ) ∈ ( ℤ ‘ 2 ) ∧ 𝑏 = ( ( 𝑎 ‘ 1 ) Yrm ( 𝑎 ‘ 2 ) ) ) ∧ ( ( ( 𝑎 ‘ 3 ) ↑ 2 ) − ( ( ( ( 𝑎 ‘ 1 ) ↑ 2 ) − 1 ) · ( 𝑏 ↑ 2 ) ) ) = 1 ) ↔ ( ( 𝑎 ‘ 1 ) ∈ ( ℤ ‘ 2 ) ∧ ( 𝑏 = ( ( 𝑎 ‘ 1 ) Yrm ( 𝑎 ‘ 2 ) ) ∧ ( ( ( 𝑎 ‘ 3 ) ↑ 2 ) − ( ( ( ( 𝑎 ‘ 1 ) ↑ 2 ) − 1 ) · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) )
21 20 rexbii ( ∃ 𝑏 ∈ ℕ0 ( ( ( 𝑎 ‘ 1 ) ∈ ( ℤ ‘ 2 ) ∧ 𝑏 = ( ( 𝑎 ‘ 1 ) Yrm ( 𝑎 ‘ 2 ) ) ) ∧ ( ( ( 𝑎 ‘ 3 ) ↑ 2 ) − ( ( ( ( 𝑎 ‘ 1 ) ↑ 2 ) − 1 ) · ( 𝑏 ↑ 2 ) ) ) = 1 ) ↔ ∃ 𝑏 ∈ ℕ0 ( ( 𝑎 ‘ 1 ) ∈ ( ℤ ‘ 2 ) ∧ ( 𝑏 = ( ( 𝑎 ‘ 1 ) Yrm ( 𝑎 ‘ 2 ) ) ∧ ( ( ( 𝑎 ‘ 3 ) ↑ 2 ) − ( ( ( ( 𝑎 ‘ 1 ) ↑ 2 ) − 1 ) · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) )
22 r19.42v ( ∃ 𝑏 ∈ ℕ0 ( ( 𝑎 ‘ 1 ) ∈ ( ℤ ‘ 2 ) ∧ ( 𝑏 = ( ( 𝑎 ‘ 1 ) Yrm ( 𝑎 ‘ 2 ) ) ∧ ( ( ( 𝑎 ‘ 3 ) ↑ 2 ) − ( ( ( ( 𝑎 ‘ 1 ) ↑ 2 ) − 1 ) · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ↔ ( ( 𝑎 ‘ 1 ) ∈ ( ℤ ‘ 2 ) ∧ ∃ 𝑏 ∈ ℕ0 ( 𝑏 = ( ( 𝑎 ‘ 1 ) Yrm ( 𝑎 ‘ 2 ) ) ∧ ( ( ( 𝑎 ‘ 3 ) ↑ 2 ) − ( ( ( ( 𝑎 ‘ 1 ) ↑ 2 ) − 1 ) · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) )
23 21 22 bitr2i ( ( ( 𝑎 ‘ 1 ) ∈ ( ℤ ‘ 2 ) ∧ ∃ 𝑏 ∈ ℕ0 ( 𝑏 = ( ( 𝑎 ‘ 1 ) Yrm ( 𝑎 ‘ 2 ) ) ∧ ( ( ( 𝑎 ‘ 3 ) ↑ 2 ) − ( ( ( ( 𝑎 ‘ 1 ) ↑ 2 ) − 1 ) · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ↔ ∃ 𝑏 ∈ ℕ0 ( ( ( 𝑎 ‘ 1 ) ∈ ( ℤ ‘ 2 ) ∧ 𝑏 = ( ( 𝑎 ‘ 1 ) Yrm ( 𝑎 ‘ 2 ) ) ) ∧ ( ( ( 𝑎 ‘ 3 ) ↑ 2 ) − ( ( ( ( 𝑎 ‘ 1 ) ↑ 2 ) − 1 ) · ( 𝑏 ↑ 2 ) ) ) = 1 ) )
24 19 23 bitrdi ( 𝑎 ∈ ( ℕ0m ( 1 ... 3 ) ) → ( ( ( 𝑎 ‘ 1 ) ∈ ( ℤ ‘ 2 ) ∧ ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) Xrm ( 𝑎 ‘ 2 ) ) ) ↔ ∃ 𝑏 ∈ ℕ0 ( ( ( 𝑎 ‘ 1 ) ∈ ( ℤ ‘ 2 ) ∧ 𝑏 = ( ( 𝑎 ‘ 1 ) Yrm ( 𝑎 ‘ 2 ) ) ) ∧ ( ( ( 𝑎 ‘ 3 ) ↑ 2 ) − ( ( ( ( 𝑎 ‘ 1 ) ↑ 2 ) − 1 ) · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) )
25 24 rabbiia { 𝑎 ∈ ( ℕ0m ( 1 ... 3 ) ) ∣ ( ( 𝑎 ‘ 1 ) ∈ ( ℤ ‘ 2 ) ∧ ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) Xrm ( 𝑎 ‘ 2 ) ) ) } = { 𝑎 ∈ ( ℕ0m ( 1 ... 3 ) ) ∣ ∃ 𝑏 ∈ ℕ0 ( ( ( 𝑎 ‘ 1 ) ∈ ( ℤ ‘ 2 ) ∧ 𝑏 = ( ( 𝑎 ‘ 1 ) Yrm ( 𝑎 ‘ 2 ) ) ) ∧ ( ( ( 𝑎 ‘ 3 ) ↑ 2 ) − ( ( ( ( 𝑎 ‘ 1 ) ↑ 2 ) − 1 ) · ( 𝑏 ↑ 2 ) ) ) = 1 ) }
26 3nn0 3 ∈ ℕ0
27 vex 𝑐 ∈ V
28 27 resex ( 𝑐 ↾ ( 1 ... 3 ) ) ∈ V
29 fvex ( 𝑐 ‘ 4 ) ∈ V
30 df-2 2 = ( 1 + 1 )
31 30 5 jm2.27dlem5 ( 1 ... 1 ) ⊆ ( 1 ... 3 )
32 1nn 1 ∈ ℕ
33 32 jm2.27dlem3 1 ∈ ( 1 ... 1 )
34 31 33 sselii 1 ∈ ( 1 ... 3 )
35 34 jm2.27dlem1 ( 𝑎 = ( 𝑐 ↾ ( 1 ... 3 ) ) → ( 𝑎 ‘ 1 ) = ( 𝑐 ‘ 1 ) )
36 35 eleq1d ( 𝑎 = ( 𝑐 ↾ ( 1 ... 3 ) ) → ( ( 𝑎 ‘ 1 ) ∈ ( ℤ ‘ 2 ) ↔ ( 𝑐 ‘ 1 ) ∈ ( ℤ ‘ 2 ) ) )
37 36 adantr ( ( 𝑎 = ( 𝑐 ↾ ( 1 ... 3 ) ) ∧ 𝑏 = ( 𝑐 ‘ 4 ) ) → ( ( 𝑎 ‘ 1 ) ∈ ( ℤ ‘ 2 ) ↔ ( 𝑐 ‘ 1 ) ∈ ( ℤ ‘ 2 ) ) )
38 simpr ( ( 𝑎 = ( 𝑐 ↾ ( 1 ... 3 ) ) ∧ 𝑏 = ( 𝑐 ‘ 4 ) ) → 𝑏 = ( 𝑐 ‘ 4 ) )
39 8 jm2.27dlem1 ( 𝑎 = ( 𝑐 ↾ ( 1 ... 3 ) ) → ( 𝑎 ‘ 2 ) = ( 𝑐 ‘ 2 ) )
40 35 39 oveq12d ( 𝑎 = ( 𝑐 ↾ ( 1 ... 3 ) ) → ( ( 𝑎 ‘ 1 ) Yrm ( 𝑎 ‘ 2 ) ) = ( ( 𝑐 ‘ 1 ) Yrm ( 𝑐 ‘ 2 ) ) )
41 40 adantr ( ( 𝑎 = ( 𝑐 ↾ ( 1 ... 3 ) ) ∧ 𝑏 = ( 𝑐 ‘ 4 ) ) → ( ( 𝑎 ‘ 1 ) Yrm ( 𝑎 ‘ 2 ) ) = ( ( 𝑐 ‘ 1 ) Yrm ( 𝑐 ‘ 2 ) ) )
42 38 41 eqeq12d ( ( 𝑎 = ( 𝑐 ↾ ( 1 ... 3 ) ) ∧ 𝑏 = ( 𝑐 ‘ 4 ) ) → ( 𝑏 = ( ( 𝑎 ‘ 1 ) Yrm ( 𝑎 ‘ 2 ) ) ↔ ( 𝑐 ‘ 4 ) = ( ( 𝑐 ‘ 1 ) Yrm ( 𝑐 ‘ 2 ) ) ) )
43 37 42 anbi12d ( ( 𝑎 = ( 𝑐 ↾ ( 1 ... 3 ) ) ∧ 𝑏 = ( 𝑐 ‘ 4 ) ) → ( ( ( 𝑎 ‘ 1 ) ∈ ( ℤ ‘ 2 ) ∧ 𝑏 = ( ( 𝑎 ‘ 1 ) Yrm ( 𝑎 ‘ 2 ) ) ) ↔ ( ( 𝑐 ‘ 1 ) ∈ ( ℤ ‘ 2 ) ∧ ( 𝑐 ‘ 4 ) = ( ( 𝑐 ‘ 1 ) Yrm ( 𝑐 ‘ 2 ) ) ) ) )
44 13 jm2.27dlem1 ( 𝑎 = ( 𝑐 ↾ ( 1 ... 3 ) ) → ( 𝑎 ‘ 3 ) = ( 𝑐 ‘ 3 ) )
45 44 oveq1d ( 𝑎 = ( 𝑐 ↾ ( 1 ... 3 ) ) → ( ( 𝑎 ‘ 3 ) ↑ 2 ) = ( ( 𝑐 ‘ 3 ) ↑ 2 ) )
46 45 adantr ( ( 𝑎 = ( 𝑐 ↾ ( 1 ... 3 ) ) ∧ 𝑏 = ( 𝑐 ‘ 4 ) ) → ( ( 𝑎 ‘ 3 ) ↑ 2 ) = ( ( 𝑐 ‘ 3 ) ↑ 2 ) )
47 35 oveq1d ( 𝑎 = ( 𝑐 ↾ ( 1 ... 3 ) ) → ( ( 𝑎 ‘ 1 ) ↑ 2 ) = ( ( 𝑐 ‘ 1 ) ↑ 2 ) )
48 47 oveq1d ( 𝑎 = ( 𝑐 ↾ ( 1 ... 3 ) ) → ( ( ( 𝑎 ‘ 1 ) ↑ 2 ) − 1 ) = ( ( ( 𝑐 ‘ 1 ) ↑ 2 ) − 1 ) )
49 oveq1 ( 𝑏 = ( 𝑐 ‘ 4 ) → ( 𝑏 ↑ 2 ) = ( ( 𝑐 ‘ 4 ) ↑ 2 ) )
50 48 49 oveqan12d ( ( 𝑎 = ( 𝑐 ↾ ( 1 ... 3 ) ) ∧ 𝑏 = ( 𝑐 ‘ 4 ) ) → ( ( ( ( 𝑎 ‘ 1 ) ↑ 2 ) − 1 ) · ( 𝑏 ↑ 2 ) ) = ( ( ( ( 𝑐 ‘ 1 ) ↑ 2 ) − 1 ) · ( ( 𝑐 ‘ 4 ) ↑ 2 ) ) )
51 46 50 oveq12d ( ( 𝑎 = ( 𝑐 ↾ ( 1 ... 3 ) ) ∧ 𝑏 = ( 𝑐 ‘ 4 ) ) → ( ( ( 𝑎 ‘ 3 ) ↑ 2 ) − ( ( ( ( 𝑎 ‘ 1 ) ↑ 2 ) − 1 ) · ( 𝑏 ↑ 2 ) ) ) = ( ( ( 𝑐 ‘ 3 ) ↑ 2 ) − ( ( ( ( 𝑐 ‘ 1 ) ↑ 2 ) − 1 ) · ( ( 𝑐 ‘ 4 ) ↑ 2 ) ) ) )
52 51 eqeq1d ( ( 𝑎 = ( 𝑐 ↾ ( 1 ... 3 ) ) ∧ 𝑏 = ( 𝑐 ‘ 4 ) ) → ( ( ( ( 𝑎 ‘ 3 ) ↑ 2 ) − ( ( ( ( 𝑎 ‘ 1 ) ↑ 2 ) − 1 ) · ( 𝑏 ↑ 2 ) ) ) = 1 ↔ ( ( ( 𝑐 ‘ 3 ) ↑ 2 ) − ( ( ( ( 𝑐 ‘ 1 ) ↑ 2 ) − 1 ) · ( ( 𝑐 ‘ 4 ) ↑ 2 ) ) ) = 1 ) )
53 43 52 anbi12d ( ( 𝑎 = ( 𝑐 ↾ ( 1 ... 3 ) ) ∧ 𝑏 = ( 𝑐 ‘ 4 ) ) → ( ( ( ( 𝑎 ‘ 1 ) ∈ ( ℤ ‘ 2 ) ∧ 𝑏 = ( ( 𝑎 ‘ 1 ) Yrm ( 𝑎 ‘ 2 ) ) ) ∧ ( ( ( 𝑎 ‘ 3 ) ↑ 2 ) − ( ( ( ( 𝑎 ‘ 1 ) ↑ 2 ) − 1 ) · ( 𝑏 ↑ 2 ) ) ) = 1 ) ↔ ( ( ( 𝑐 ‘ 1 ) ∈ ( ℤ ‘ 2 ) ∧ ( 𝑐 ‘ 4 ) = ( ( 𝑐 ‘ 1 ) Yrm ( 𝑐 ‘ 2 ) ) ) ∧ ( ( ( 𝑐 ‘ 3 ) ↑ 2 ) − ( ( ( ( 𝑐 ‘ 1 ) ↑ 2 ) − 1 ) · ( ( 𝑐 ‘ 4 ) ↑ 2 ) ) ) = 1 ) ) )
54 28 29 53 sbc2ie ( [ ( 𝑐 ↾ ( 1 ... 3 ) ) / 𝑎 ] [ ( 𝑐 ‘ 4 ) / 𝑏 ] ( ( ( 𝑎 ‘ 1 ) ∈ ( ℤ ‘ 2 ) ∧ 𝑏 = ( ( 𝑎 ‘ 1 ) Yrm ( 𝑎 ‘ 2 ) ) ) ∧ ( ( ( 𝑎 ‘ 3 ) ↑ 2 ) − ( ( ( ( 𝑎 ‘ 1 ) ↑ 2 ) − 1 ) · ( 𝑏 ↑ 2 ) ) ) = 1 ) ↔ ( ( ( 𝑐 ‘ 1 ) ∈ ( ℤ ‘ 2 ) ∧ ( 𝑐 ‘ 4 ) = ( ( 𝑐 ‘ 1 ) Yrm ( 𝑐 ‘ 2 ) ) ) ∧ ( ( ( 𝑐 ‘ 3 ) ↑ 2 ) − ( ( ( ( 𝑐 ‘ 1 ) ↑ 2 ) − 1 ) · ( ( 𝑐 ‘ 4 ) ↑ 2 ) ) ) = 1 ) )
55 54 rabbii { 𝑐 ∈ ( ℕ0m ( 1 ... 4 ) ) ∣ [ ( 𝑐 ↾ ( 1 ... 3 ) ) / 𝑎 ] [ ( 𝑐 ‘ 4 ) / 𝑏 ] ( ( ( 𝑎 ‘ 1 ) ∈ ( ℤ ‘ 2 ) ∧ 𝑏 = ( ( 𝑎 ‘ 1 ) Yrm ( 𝑎 ‘ 2 ) ) ) ∧ ( ( ( 𝑎 ‘ 3 ) ↑ 2 ) − ( ( ( ( 𝑎 ‘ 1 ) ↑ 2 ) − 1 ) · ( 𝑏 ↑ 2 ) ) ) = 1 ) } = { 𝑐 ∈ ( ℕ0m ( 1 ... 4 ) ) ∣ ( ( ( 𝑐 ‘ 1 ) ∈ ( ℤ ‘ 2 ) ∧ ( 𝑐 ‘ 4 ) = ( ( 𝑐 ‘ 1 ) Yrm ( 𝑐 ‘ 2 ) ) ) ∧ ( ( ( 𝑐 ‘ 3 ) ↑ 2 ) − ( ( ( ( 𝑐 ‘ 1 ) ↑ 2 ) − 1 ) · ( ( 𝑐 ‘ 4 ) ↑ 2 ) ) ) = 1 ) }
56 4nn0 4 ∈ ℕ0
57 rmydioph { 𝑏 ∈ ( ℕ0m ( 1 ... 3 ) ) ∣ ( ( 𝑏 ‘ 1 ) ∈ ( ℤ ‘ 2 ) ∧ ( 𝑏 ‘ 3 ) = ( ( 𝑏 ‘ 1 ) Yrm ( 𝑏 ‘ 2 ) ) ) } ∈ ( Dioph ‘ 3 )
58 simp1 ( ( ( 𝑏 ‘ 1 ) = ( 𝑐 ‘ 1 ) ∧ ( 𝑏 ‘ 2 ) = ( 𝑐 ‘ 2 ) ∧ ( 𝑏 ‘ 3 ) = ( 𝑐 ‘ 4 ) ) → ( 𝑏 ‘ 1 ) = ( 𝑐 ‘ 1 ) )
59 58 eleq1d ( ( ( 𝑏 ‘ 1 ) = ( 𝑐 ‘ 1 ) ∧ ( 𝑏 ‘ 2 ) = ( 𝑐 ‘ 2 ) ∧ ( 𝑏 ‘ 3 ) = ( 𝑐 ‘ 4 ) ) → ( ( 𝑏 ‘ 1 ) ∈ ( ℤ ‘ 2 ) ↔ ( 𝑐 ‘ 1 ) ∈ ( ℤ ‘ 2 ) ) )
60 simp3 ( ( ( 𝑏 ‘ 1 ) = ( 𝑐 ‘ 1 ) ∧ ( 𝑏 ‘ 2 ) = ( 𝑐 ‘ 2 ) ∧ ( 𝑏 ‘ 3 ) = ( 𝑐 ‘ 4 ) ) → ( 𝑏 ‘ 3 ) = ( 𝑐 ‘ 4 ) )
61 simp2 ( ( ( 𝑏 ‘ 1 ) = ( 𝑐 ‘ 1 ) ∧ ( 𝑏 ‘ 2 ) = ( 𝑐 ‘ 2 ) ∧ ( 𝑏 ‘ 3 ) = ( 𝑐 ‘ 4 ) ) → ( 𝑏 ‘ 2 ) = ( 𝑐 ‘ 2 ) )
62 58 61 oveq12d ( ( ( 𝑏 ‘ 1 ) = ( 𝑐 ‘ 1 ) ∧ ( 𝑏 ‘ 2 ) = ( 𝑐 ‘ 2 ) ∧ ( 𝑏 ‘ 3 ) = ( 𝑐 ‘ 4 ) ) → ( ( 𝑏 ‘ 1 ) Yrm ( 𝑏 ‘ 2 ) ) = ( ( 𝑐 ‘ 1 ) Yrm ( 𝑐 ‘ 2 ) ) )
63 60 62 eqeq12d ( ( ( 𝑏 ‘ 1 ) = ( 𝑐 ‘ 1 ) ∧ ( 𝑏 ‘ 2 ) = ( 𝑐 ‘ 2 ) ∧ ( 𝑏 ‘ 3 ) = ( 𝑐 ‘ 4 ) ) → ( ( 𝑏 ‘ 3 ) = ( ( 𝑏 ‘ 1 ) Yrm ( 𝑏 ‘ 2 ) ) ↔ ( 𝑐 ‘ 4 ) = ( ( 𝑐 ‘ 1 ) Yrm ( 𝑐 ‘ 2 ) ) ) )
64 59 63 anbi12d ( ( ( 𝑏 ‘ 1 ) = ( 𝑐 ‘ 1 ) ∧ ( 𝑏 ‘ 2 ) = ( 𝑐 ‘ 2 ) ∧ ( 𝑏 ‘ 3 ) = ( 𝑐 ‘ 4 ) ) → ( ( ( 𝑏 ‘ 1 ) ∈ ( ℤ ‘ 2 ) ∧ ( 𝑏 ‘ 3 ) = ( ( 𝑏 ‘ 1 ) Yrm ( 𝑏 ‘ 2 ) ) ) ↔ ( ( 𝑐 ‘ 1 ) ∈ ( ℤ ‘ 2 ) ∧ ( 𝑐 ‘ 4 ) = ( ( 𝑐 ‘ 1 ) Yrm ( 𝑐 ‘ 2 ) ) ) ) )
65 df-4 4 = ( 3 + 1 )
66 ssid ( 1 ... 4 ) ⊆ ( 1 ... 4 )
67 65 66 jm2.27dlem5 ( 1 ... 3 ) ⊆ ( 1 ... 4 )
68 3 67 jm2.27dlem5 ( 1 ... 2 ) ⊆ ( 1 ... 4 )
69 30 68 jm2.27dlem5 ( 1 ... 1 ) ⊆ ( 1 ... 4 )
70 69 33 sselii 1 ∈ ( 1 ... 4 )
71 68 7 sselii 2 ∈ ( 1 ... 4 )
72 4nn 4 ∈ ℕ
73 72 jm2.27dlem3 4 ∈ ( 1 ... 4 )
74 64 70 71 73 rabren3dioph ( ( 4 ∈ ℕ0 ∧ { 𝑏 ∈ ( ℕ0m ( 1 ... 3 ) ) ∣ ( ( 𝑏 ‘ 1 ) ∈ ( ℤ ‘ 2 ) ∧ ( 𝑏 ‘ 3 ) = ( ( 𝑏 ‘ 1 ) Yrm ( 𝑏 ‘ 2 ) ) ) } ∈ ( Dioph ‘ 3 ) ) → { 𝑐 ∈ ( ℕ0m ( 1 ... 4 ) ) ∣ ( ( 𝑐 ‘ 1 ) ∈ ( ℤ ‘ 2 ) ∧ ( 𝑐 ‘ 4 ) = ( ( 𝑐 ‘ 1 ) Yrm ( 𝑐 ‘ 2 ) ) ) } ∈ ( Dioph ‘ 4 ) )
75 56 57 74 mp2an { 𝑐 ∈ ( ℕ0m ( 1 ... 4 ) ) ∣ ( ( 𝑐 ‘ 1 ) ∈ ( ℤ ‘ 2 ) ∧ ( 𝑐 ‘ 4 ) = ( ( 𝑐 ‘ 1 ) Yrm ( 𝑐 ‘ 2 ) ) ) } ∈ ( Dioph ‘ 4 )
76 ovex ( 1 ... 4 ) ∈ V
77 67 13 sselii 3 ∈ ( 1 ... 4 )
78 mzpproj ( ( ( 1 ... 4 ) ∈ V ∧ 3 ∈ ( 1 ... 4 ) ) → ( 𝑐 ∈ ( ℤ ↑m ( 1 ... 4 ) ) ↦ ( 𝑐 ‘ 3 ) ) ∈ ( mzPoly ‘ ( 1 ... 4 ) ) )
79 76 77 78 mp2an ( 𝑐 ∈ ( ℤ ↑m ( 1 ... 4 ) ) ↦ ( 𝑐 ‘ 3 ) ) ∈ ( mzPoly ‘ ( 1 ... 4 ) )
80 2nn0 2 ∈ ℕ0
81 mzpexpmpt ( ( ( 𝑐 ∈ ( ℤ ↑m ( 1 ... 4 ) ) ↦ ( 𝑐 ‘ 3 ) ) ∈ ( mzPoly ‘ ( 1 ... 4 ) ) ∧ 2 ∈ ℕ0 ) → ( 𝑐 ∈ ( ℤ ↑m ( 1 ... 4 ) ) ↦ ( ( 𝑐 ‘ 3 ) ↑ 2 ) ) ∈ ( mzPoly ‘ ( 1 ... 4 ) ) )
82 79 80 81 mp2an ( 𝑐 ∈ ( ℤ ↑m ( 1 ... 4 ) ) ↦ ( ( 𝑐 ‘ 3 ) ↑ 2 ) ) ∈ ( mzPoly ‘ ( 1 ... 4 ) )
83 mzpproj ( ( ( 1 ... 4 ) ∈ V ∧ 1 ∈ ( 1 ... 4 ) ) → ( 𝑐 ∈ ( ℤ ↑m ( 1 ... 4 ) ) ↦ ( 𝑐 ‘ 1 ) ) ∈ ( mzPoly ‘ ( 1 ... 4 ) ) )
84 76 70 83 mp2an ( 𝑐 ∈ ( ℤ ↑m ( 1 ... 4 ) ) ↦ ( 𝑐 ‘ 1 ) ) ∈ ( mzPoly ‘ ( 1 ... 4 ) )
85 mzpexpmpt ( ( ( 𝑐 ∈ ( ℤ ↑m ( 1 ... 4 ) ) ↦ ( 𝑐 ‘ 1 ) ) ∈ ( mzPoly ‘ ( 1 ... 4 ) ) ∧ 2 ∈ ℕ0 ) → ( 𝑐 ∈ ( ℤ ↑m ( 1 ... 4 ) ) ↦ ( ( 𝑐 ‘ 1 ) ↑ 2 ) ) ∈ ( mzPoly ‘ ( 1 ... 4 ) ) )
86 84 80 85 mp2an ( 𝑐 ∈ ( ℤ ↑m ( 1 ... 4 ) ) ↦ ( ( 𝑐 ‘ 1 ) ↑ 2 ) ) ∈ ( mzPoly ‘ ( 1 ... 4 ) )
87 1z 1 ∈ ℤ
88 mzpconstmpt ( ( ( 1 ... 4 ) ∈ V ∧ 1 ∈ ℤ ) → ( 𝑐 ∈ ( ℤ ↑m ( 1 ... 4 ) ) ↦ 1 ) ∈ ( mzPoly ‘ ( 1 ... 4 ) ) )
89 76 87 88 mp2an ( 𝑐 ∈ ( ℤ ↑m ( 1 ... 4 ) ) ↦ 1 ) ∈ ( mzPoly ‘ ( 1 ... 4 ) )
90 mzpsubmpt ( ( ( 𝑐 ∈ ( ℤ ↑m ( 1 ... 4 ) ) ↦ ( ( 𝑐 ‘ 1 ) ↑ 2 ) ) ∈ ( mzPoly ‘ ( 1 ... 4 ) ) ∧ ( 𝑐 ∈ ( ℤ ↑m ( 1 ... 4 ) ) ↦ 1 ) ∈ ( mzPoly ‘ ( 1 ... 4 ) ) ) → ( 𝑐 ∈ ( ℤ ↑m ( 1 ... 4 ) ) ↦ ( ( ( 𝑐 ‘ 1 ) ↑ 2 ) − 1 ) ) ∈ ( mzPoly ‘ ( 1 ... 4 ) ) )
91 86 89 90 mp2an ( 𝑐 ∈ ( ℤ ↑m ( 1 ... 4 ) ) ↦ ( ( ( 𝑐 ‘ 1 ) ↑ 2 ) − 1 ) ) ∈ ( mzPoly ‘ ( 1 ... 4 ) )
92 mzpproj ( ( ( 1 ... 4 ) ∈ V ∧ 4 ∈ ( 1 ... 4 ) ) → ( 𝑐 ∈ ( ℤ ↑m ( 1 ... 4 ) ) ↦ ( 𝑐 ‘ 4 ) ) ∈ ( mzPoly ‘ ( 1 ... 4 ) ) )
93 76 73 92 mp2an ( 𝑐 ∈ ( ℤ ↑m ( 1 ... 4 ) ) ↦ ( 𝑐 ‘ 4 ) ) ∈ ( mzPoly ‘ ( 1 ... 4 ) )
94 mzpexpmpt ( ( ( 𝑐 ∈ ( ℤ ↑m ( 1 ... 4 ) ) ↦ ( 𝑐 ‘ 4 ) ) ∈ ( mzPoly ‘ ( 1 ... 4 ) ) ∧ 2 ∈ ℕ0 ) → ( 𝑐 ∈ ( ℤ ↑m ( 1 ... 4 ) ) ↦ ( ( 𝑐 ‘ 4 ) ↑ 2 ) ) ∈ ( mzPoly ‘ ( 1 ... 4 ) ) )
95 93 80 94 mp2an ( 𝑐 ∈ ( ℤ ↑m ( 1 ... 4 ) ) ↦ ( ( 𝑐 ‘ 4 ) ↑ 2 ) ) ∈ ( mzPoly ‘ ( 1 ... 4 ) )
96 mzpmulmpt ( ( ( 𝑐 ∈ ( ℤ ↑m ( 1 ... 4 ) ) ↦ ( ( ( 𝑐 ‘ 1 ) ↑ 2 ) − 1 ) ) ∈ ( mzPoly ‘ ( 1 ... 4 ) ) ∧ ( 𝑐 ∈ ( ℤ ↑m ( 1 ... 4 ) ) ↦ ( ( 𝑐 ‘ 4 ) ↑ 2 ) ) ∈ ( mzPoly ‘ ( 1 ... 4 ) ) ) → ( 𝑐 ∈ ( ℤ ↑m ( 1 ... 4 ) ) ↦ ( ( ( ( 𝑐 ‘ 1 ) ↑ 2 ) − 1 ) · ( ( 𝑐 ‘ 4 ) ↑ 2 ) ) ) ∈ ( mzPoly ‘ ( 1 ... 4 ) ) )
97 91 95 96 mp2an ( 𝑐 ∈ ( ℤ ↑m ( 1 ... 4 ) ) ↦ ( ( ( ( 𝑐 ‘ 1 ) ↑ 2 ) − 1 ) · ( ( 𝑐 ‘ 4 ) ↑ 2 ) ) ) ∈ ( mzPoly ‘ ( 1 ... 4 ) )
98 mzpsubmpt ( ( ( 𝑐 ∈ ( ℤ ↑m ( 1 ... 4 ) ) ↦ ( ( 𝑐 ‘ 3 ) ↑ 2 ) ) ∈ ( mzPoly ‘ ( 1 ... 4 ) ) ∧ ( 𝑐 ∈ ( ℤ ↑m ( 1 ... 4 ) ) ↦ ( ( ( ( 𝑐 ‘ 1 ) ↑ 2 ) − 1 ) · ( ( 𝑐 ‘ 4 ) ↑ 2 ) ) ) ∈ ( mzPoly ‘ ( 1 ... 4 ) ) ) → ( 𝑐 ∈ ( ℤ ↑m ( 1 ... 4 ) ) ↦ ( ( ( 𝑐 ‘ 3 ) ↑ 2 ) − ( ( ( ( 𝑐 ‘ 1 ) ↑ 2 ) − 1 ) · ( ( 𝑐 ‘ 4 ) ↑ 2 ) ) ) ) ∈ ( mzPoly ‘ ( 1 ... 4 ) ) )
99 82 97 98 mp2an ( 𝑐 ∈ ( ℤ ↑m ( 1 ... 4 ) ) ↦ ( ( ( 𝑐 ‘ 3 ) ↑ 2 ) − ( ( ( ( 𝑐 ‘ 1 ) ↑ 2 ) − 1 ) · ( ( 𝑐 ‘ 4 ) ↑ 2 ) ) ) ) ∈ ( mzPoly ‘ ( 1 ... 4 ) )
100 eqrabdioph ( ( 4 ∈ ℕ0 ∧ ( 𝑐 ∈ ( ℤ ↑m ( 1 ... 4 ) ) ↦ ( ( ( 𝑐 ‘ 3 ) ↑ 2 ) − ( ( ( ( 𝑐 ‘ 1 ) ↑ 2 ) − 1 ) · ( ( 𝑐 ‘ 4 ) ↑ 2 ) ) ) ) ∈ ( mzPoly ‘ ( 1 ... 4 ) ) ∧ ( 𝑐 ∈ ( ℤ ↑m ( 1 ... 4 ) ) ↦ 1 ) ∈ ( mzPoly ‘ ( 1 ... 4 ) ) ) → { 𝑐 ∈ ( ℕ0m ( 1 ... 4 ) ) ∣ ( ( ( 𝑐 ‘ 3 ) ↑ 2 ) − ( ( ( ( 𝑐 ‘ 1 ) ↑ 2 ) − 1 ) · ( ( 𝑐 ‘ 4 ) ↑ 2 ) ) ) = 1 } ∈ ( Dioph ‘ 4 ) )
101 56 99 89 100 mp3an { 𝑐 ∈ ( ℕ0m ( 1 ... 4 ) ) ∣ ( ( ( 𝑐 ‘ 3 ) ↑ 2 ) − ( ( ( ( 𝑐 ‘ 1 ) ↑ 2 ) − 1 ) · ( ( 𝑐 ‘ 4 ) ↑ 2 ) ) ) = 1 } ∈ ( Dioph ‘ 4 )
102 anrabdioph ( ( { 𝑐 ∈ ( ℕ0m ( 1 ... 4 ) ) ∣ ( ( 𝑐 ‘ 1 ) ∈ ( ℤ ‘ 2 ) ∧ ( 𝑐 ‘ 4 ) = ( ( 𝑐 ‘ 1 ) Yrm ( 𝑐 ‘ 2 ) ) ) } ∈ ( Dioph ‘ 4 ) ∧ { 𝑐 ∈ ( ℕ0m ( 1 ... 4 ) ) ∣ ( ( ( 𝑐 ‘ 3 ) ↑ 2 ) − ( ( ( ( 𝑐 ‘ 1 ) ↑ 2 ) − 1 ) · ( ( 𝑐 ‘ 4 ) ↑ 2 ) ) ) = 1 } ∈ ( Dioph ‘ 4 ) ) → { 𝑐 ∈ ( ℕ0m ( 1 ... 4 ) ) ∣ ( ( ( 𝑐 ‘ 1 ) ∈ ( ℤ ‘ 2 ) ∧ ( 𝑐 ‘ 4 ) = ( ( 𝑐 ‘ 1 ) Yrm ( 𝑐 ‘ 2 ) ) ) ∧ ( ( ( 𝑐 ‘ 3 ) ↑ 2 ) − ( ( ( ( 𝑐 ‘ 1 ) ↑ 2 ) − 1 ) · ( ( 𝑐 ‘ 4 ) ↑ 2 ) ) ) = 1 ) } ∈ ( Dioph ‘ 4 ) )
103 75 101 102 mp2an { 𝑐 ∈ ( ℕ0m ( 1 ... 4 ) ) ∣ ( ( ( 𝑐 ‘ 1 ) ∈ ( ℤ ‘ 2 ) ∧ ( 𝑐 ‘ 4 ) = ( ( 𝑐 ‘ 1 ) Yrm ( 𝑐 ‘ 2 ) ) ) ∧ ( ( ( 𝑐 ‘ 3 ) ↑ 2 ) − ( ( ( ( 𝑐 ‘ 1 ) ↑ 2 ) − 1 ) · ( ( 𝑐 ‘ 4 ) ↑ 2 ) ) ) = 1 ) } ∈ ( Dioph ‘ 4 )
104 55 103 eqeltri { 𝑐 ∈ ( ℕ0m ( 1 ... 4 ) ) ∣ [ ( 𝑐 ↾ ( 1 ... 3 ) ) / 𝑎 ] [ ( 𝑐 ‘ 4 ) / 𝑏 ] ( ( ( 𝑎 ‘ 1 ) ∈ ( ℤ ‘ 2 ) ∧ 𝑏 = ( ( 𝑎 ‘ 1 ) Yrm ( 𝑎 ‘ 2 ) ) ) ∧ ( ( ( 𝑎 ‘ 3 ) ↑ 2 ) − ( ( ( ( 𝑎 ‘ 1 ) ↑ 2 ) − 1 ) · ( 𝑏 ↑ 2 ) ) ) = 1 ) } ∈ ( Dioph ‘ 4 )
105 65 rexfrabdioph ( ( 3 ∈ ℕ0 ∧ { 𝑐 ∈ ( ℕ0m ( 1 ... 4 ) ) ∣ [ ( 𝑐 ↾ ( 1 ... 3 ) ) / 𝑎 ] [ ( 𝑐 ‘ 4 ) / 𝑏 ] ( ( ( 𝑎 ‘ 1 ) ∈ ( ℤ ‘ 2 ) ∧ 𝑏 = ( ( 𝑎 ‘ 1 ) Yrm ( 𝑎 ‘ 2 ) ) ) ∧ ( ( ( 𝑎 ‘ 3 ) ↑ 2 ) − ( ( ( ( 𝑎 ‘ 1 ) ↑ 2 ) − 1 ) · ( 𝑏 ↑ 2 ) ) ) = 1 ) } ∈ ( Dioph ‘ 4 ) ) → { 𝑎 ∈ ( ℕ0m ( 1 ... 3 ) ) ∣ ∃ 𝑏 ∈ ℕ0 ( ( ( 𝑎 ‘ 1 ) ∈ ( ℤ ‘ 2 ) ∧ 𝑏 = ( ( 𝑎 ‘ 1 ) Yrm ( 𝑎 ‘ 2 ) ) ) ∧ ( ( ( 𝑎 ‘ 3 ) ↑ 2 ) − ( ( ( ( 𝑎 ‘ 1 ) ↑ 2 ) − 1 ) · ( 𝑏 ↑ 2 ) ) ) = 1 ) } ∈ ( Dioph ‘ 3 ) )
106 26 104 105 mp2an { 𝑎 ∈ ( ℕ0m ( 1 ... 3 ) ) ∣ ∃ 𝑏 ∈ ℕ0 ( ( ( 𝑎 ‘ 1 ) ∈ ( ℤ ‘ 2 ) ∧ 𝑏 = ( ( 𝑎 ‘ 1 ) Yrm ( 𝑎 ‘ 2 ) ) ) ∧ ( ( ( 𝑎 ‘ 3 ) ↑ 2 ) − ( ( ( ( 𝑎 ‘ 1 ) ↑ 2 ) − 1 ) · ( 𝑏 ↑ 2 ) ) ) = 1 ) } ∈ ( Dioph ‘ 3 )
107 25 106 eqeltri { 𝑎 ∈ ( ℕ0m ( 1 ... 3 ) ) ∣ ( ( 𝑎 ‘ 1 ) ∈ ( ℤ ‘ 2 ) ∧ ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) Xrm ( 𝑎 ‘ 2 ) ) ) } ∈ ( Dioph ‘ 3 )