| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr | ⊢ ( ( 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∧  ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 ) )  →  ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 2 |  | elmapi | ⊢ ( 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  →  𝑎 : ( 1 ... 3 ) ⟶ ℕ0 ) | 
						
							| 3 |  | df-3 | ⊢ 3  =  ( 2  +  1 ) | 
						
							| 4 |  | ssid | ⊢ ( 1 ... 3 )  ⊆  ( 1 ... 3 ) | 
						
							| 5 | 3 4 | jm2.27dlem5 | ⊢ ( 1 ... 2 )  ⊆  ( 1 ... 3 ) | 
						
							| 6 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 7 | 6 | jm2.27dlem3 | ⊢ 2  ∈  ( 1 ... 2 ) | 
						
							| 8 | 5 7 | sselii | ⊢ 2  ∈  ( 1 ... 3 ) | 
						
							| 9 |  | ffvelcdm | ⊢ ( ( 𝑎 : ( 1 ... 3 ) ⟶ ℕ0  ∧  2  ∈  ( 1 ... 3 ) )  →  ( 𝑎 ‘ 2 )  ∈  ℕ0 ) | 
						
							| 10 | 2 8 9 | sylancl | ⊢ ( 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  →  ( 𝑎 ‘ 2 )  ∈  ℕ0 ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∧  ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 ) )  →  ( 𝑎 ‘ 2 )  ∈  ℕ0 ) | 
						
							| 12 |  | 3nn | ⊢ 3  ∈  ℕ | 
						
							| 13 | 12 | jm2.27dlem3 | ⊢ 3  ∈  ( 1 ... 3 ) | 
						
							| 14 |  | ffvelcdm | ⊢ ( ( 𝑎 : ( 1 ... 3 ) ⟶ ℕ0  ∧  3  ∈  ( 1 ... 3 ) )  →  ( 𝑎 ‘ 3 )  ∈  ℕ0 ) | 
						
							| 15 | 2 13 14 | sylancl | ⊢ ( 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  →  ( 𝑎 ‘ 3 )  ∈  ℕ0 ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∧  ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 ) )  →  ( 𝑎 ‘ 3 )  ∈  ℕ0 ) | 
						
							| 17 |  | rmxdiophlem | ⊢ ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ0  ∧  ( 𝑎 ‘ 3 )  ∈  ℕ0 )  →  ( ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 )  Xrm  ( 𝑎 ‘ 2 ) )  ↔  ∃ 𝑏  ∈  ℕ0 ( 𝑏  =  ( ( 𝑎 ‘ 1 )  Yrm  ( 𝑎 ‘ 2 ) )  ∧  ( ( ( 𝑎 ‘ 3 ) ↑ 2 )  −  ( ( ( ( 𝑎 ‘ 1 ) ↑ 2 )  −  1 )  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) ) ) | 
						
							| 18 | 1 11 16 17 | syl3anc | ⊢ ( ( 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∧  ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 ) )  →  ( ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 )  Xrm  ( 𝑎 ‘ 2 ) )  ↔  ∃ 𝑏  ∈  ℕ0 ( 𝑏  =  ( ( 𝑎 ‘ 1 )  Yrm  ( 𝑎 ‘ 2 ) )  ∧  ( ( ( 𝑎 ‘ 3 ) ↑ 2 )  −  ( ( ( ( 𝑎 ‘ 1 ) ↑ 2 )  −  1 )  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) ) ) | 
						
							| 19 | 18 | pm5.32da | ⊢ ( 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  →  ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 )  Xrm  ( 𝑎 ‘ 2 ) ) )  ↔  ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ∃ 𝑏  ∈  ℕ0 ( 𝑏  =  ( ( 𝑎 ‘ 1 )  Yrm  ( 𝑎 ‘ 2 ) )  ∧  ( ( ( 𝑎 ‘ 3 ) ↑ 2 )  −  ( ( ( ( 𝑎 ‘ 1 ) ↑ 2 )  −  1 )  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) ) ) ) | 
						
							| 20 |  | anass | ⊢ ( ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑏  =  ( ( 𝑎 ‘ 1 )  Yrm  ( 𝑎 ‘ 2 ) ) )  ∧  ( ( ( 𝑎 ‘ 3 ) ↑ 2 )  −  ( ( ( ( 𝑎 ‘ 1 ) ↑ 2 )  −  1 )  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  ↔  ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑏  =  ( ( 𝑎 ‘ 1 )  Yrm  ( 𝑎 ‘ 2 ) )  ∧  ( ( ( 𝑎 ‘ 3 ) ↑ 2 )  −  ( ( ( ( 𝑎 ‘ 1 ) ↑ 2 )  −  1 )  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) ) ) | 
						
							| 21 | 20 | rexbii | ⊢ ( ∃ 𝑏  ∈  ℕ0 ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑏  =  ( ( 𝑎 ‘ 1 )  Yrm  ( 𝑎 ‘ 2 ) ) )  ∧  ( ( ( 𝑎 ‘ 3 ) ↑ 2 )  −  ( ( ( ( 𝑎 ‘ 1 ) ↑ 2 )  −  1 )  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  ↔  ∃ 𝑏  ∈  ℕ0 ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑏  =  ( ( 𝑎 ‘ 1 )  Yrm  ( 𝑎 ‘ 2 ) )  ∧  ( ( ( 𝑎 ‘ 3 ) ↑ 2 )  −  ( ( ( ( 𝑎 ‘ 1 ) ↑ 2 )  −  1 )  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) ) ) | 
						
							| 22 |  | r19.42v | ⊢ ( ∃ 𝑏  ∈  ℕ0 ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑏  =  ( ( 𝑎 ‘ 1 )  Yrm  ( 𝑎 ‘ 2 ) )  ∧  ( ( ( 𝑎 ‘ 3 ) ↑ 2 )  −  ( ( ( ( 𝑎 ‘ 1 ) ↑ 2 )  −  1 )  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  ↔  ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ∃ 𝑏  ∈  ℕ0 ( 𝑏  =  ( ( 𝑎 ‘ 1 )  Yrm  ( 𝑎 ‘ 2 ) )  ∧  ( ( ( 𝑎 ‘ 3 ) ↑ 2 )  −  ( ( ( ( 𝑎 ‘ 1 ) ↑ 2 )  −  1 )  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) ) ) | 
						
							| 23 | 21 22 | bitr2i | ⊢ ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ∃ 𝑏  ∈  ℕ0 ( 𝑏  =  ( ( 𝑎 ‘ 1 )  Yrm  ( 𝑎 ‘ 2 ) )  ∧  ( ( ( 𝑎 ‘ 3 ) ↑ 2 )  −  ( ( ( ( 𝑎 ‘ 1 ) ↑ 2 )  −  1 )  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  ↔  ∃ 𝑏  ∈  ℕ0 ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑏  =  ( ( 𝑎 ‘ 1 )  Yrm  ( 𝑎 ‘ 2 ) ) )  ∧  ( ( ( 𝑎 ‘ 3 ) ↑ 2 )  −  ( ( ( ( 𝑎 ‘ 1 ) ↑ 2 )  −  1 )  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) ) | 
						
							| 24 | 19 23 | bitrdi | ⊢ ( 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  →  ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 )  Xrm  ( 𝑎 ‘ 2 ) ) )  ↔  ∃ 𝑏  ∈  ℕ0 ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑏  =  ( ( 𝑎 ‘ 1 )  Yrm  ( 𝑎 ‘ 2 ) ) )  ∧  ( ( ( 𝑎 ‘ 3 ) ↑ 2 )  −  ( ( ( ( 𝑎 ‘ 1 ) ↑ 2 )  −  1 )  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) ) ) | 
						
							| 25 | 24 | rabbiia | ⊢ { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∣  ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 )  Xrm  ( 𝑎 ‘ 2 ) ) ) }  =  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∣  ∃ 𝑏  ∈  ℕ0 ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑏  =  ( ( 𝑎 ‘ 1 )  Yrm  ( 𝑎 ‘ 2 ) ) )  ∧  ( ( ( 𝑎 ‘ 3 ) ↑ 2 )  −  ( ( ( ( 𝑎 ‘ 1 ) ↑ 2 )  −  1 )  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) } | 
						
							| 26 |  | 3nn0 | ⊢ 3  ∈  ℕ0 | 
						
							| 27 |  | vex | ⊢ 𝑐  ∈  V | 
						
							| 28 | 27 | resex | ⊢ ( 𝑐  ↾  ( 1 ... 3 ) )  ∈  V | 
						
							| 29 |  | fvex | ⊢ ( 𝑐 ‘ 4 )  ∈  V | 
						
							| 30 |  | df-2 | ⊢ 2  =  ( 1  +  1 ) | 
						
							| 31 | 30 5 | jm2.27dlem5 | ⊢ ( 1 ... 1 )  ⊆  ( 1 ... 3 ) | 
						
							| 32 |  | 1nn | ⊢ 1  ∈  ℕ | 
						
							| 33 | 32 | jm2.27dlem3 | ⊢ 1  ∈  ( 1 ... 1 ) | 
						
							| 34 | 31 33 | sselii | ⊢ 1  ∈  ( 1 ... 3 ) | 
						
							| 35 | 34 | jm2.27dlem1 | ⊢ ( 𝑎  =  ( 𝑐  ↾  ( 1 ... 3 ) )  →  ( 𝑎 ‘ 1 )  =  ( 𝑐 ‘ 1 ) ) | 
						
							| 36 | 35 | eleq1d | ⊢ ( 𝑎  =  ( 𝑐  ↾  ( 1 ... 3 ) )  →  ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ↔  ( 𝑐 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 ) ) ) | 
						
							| 37 | 36 | adantr | ⊢ ( ( 𝑎  =  ( 𝑐  ↾  ( 1 ... 3 ) )  ∧  𝑏  =  ( 𝑐 ‘ 4 ) )  →  ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ↔  ( 𝑐 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 ) ) ) | 
						
							| 38 |  | simpr | ⊢ ( ( 𝑎  =  ( 𝑐  ↾  ( 1 ... 3 ) )  ∧  𝑏  =  ( 𝑐 ‘ 4 ) )  →  𝑏  =  ( 𝑐 ‘ 4 ) ) | 
						
							| 39 | 8 | jm2.27dlem1 | ⊢ ( 𝑎  =  ( 𝑐  ↾  ( 1 ... 3 ) )  →  ( 𝑎 ‘ 2 )  =  ( 𝑐 ‘ 2 ) ) | 
						
							| 40 | 35 39 | oveq12d | ⊢ ( 𝑎  =  ( 𝑐  ↾  ( 1 ... 3 ) )  →  ( ( 𝑎 ‘ 1 )  Yrm  ( 𝑎 ‘ 2 ) )  =  ( ( 𝑐 ‘ 1 )  Yrm  ( 𝑐 ‘ 2 ) ) ) | 
						
							| 41 | 40 | adantr | ⊢ ( ( 𝑎  =  ( 𝑐  ↾  ( 1 ... 3 ) )  ∧  𝑏  =  ( 𝑐 ‘ 4 ) )  →  ( ( 𝑎 ‘ 1 )  Yrm  ( 𝑎 ‘ 2 ) )  =  ( ( 𝑐 ‘ 1 )  Yrm  ( 𝑐 ‘ 2 ) ) ) | 
						
							| 42 | 38 41 | eqeq12d | ⊢ ( ( 𝑎  =  ( 𝑐  ↾  ( 1 ... 3 ) )  ∧  𝑏  =  ( 𝑐 ‘ 4 ) )  →  ( 𝑏  =  ( ( 𝑎 ‘ 1 )  Yrm  ( 𝑎 ‘ 2 ) )  ↔  ( 𝑐 ‘ 4 )  =  ( ( 𝑐 ‘ 1 )  Yrm  ( 𝑐 ‘ 2 ) ) ) ) | 
						
							| 43 | 37 42 | anbi12d | ⊢ ( ( 𝑎  =  ( 𝑐  ↾  ( 1 ... 3 ) )  ∧  𝑏  =  ( 𝑐 ‘ 4 ) )  →  ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑏  =  ( ( 𝑎 ‘ 1 )  Yrm  ( 𝑎 ‘ 2 ) ) )  ↔  ( ( 𝑐 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑐 ‘ 4 )  =  ( ( 𝑐 ‘ 1 )  Yrm  ( 𝑐 ‘ 2 ) ) ) ) ) | 
						
							| 44 | 13 | jm2.27dlem1 | ⊢ ( 𝑎  =  ( 𝑐  ↾  ( 1 ... 3 ) )  →  ( 𝑎 ‘ 3 )  =  ( 𝑐 ‘ 3 ) ) | 
						
							| 45 | 44 | oveq1d | ⊢ ( 𝑎  =  ( 𝑐  ↾  ( 1 ... 3 ) )  →  ( ( 𝑎 ‘ 3 ) ↑ 2 )  =  ( ( 𝑐 ‘ 3 ) ↑ 2 ) ) | 
						
							| 46 | 45 | adantr | ⊢ ( ( 𝑎  =  ( 𝑐  ↾  ( 1 ... 3 ) )  ∧  𝑏  =  ( 𝑐 ‘ 4 ) )  →  ( ( 𝑎 ‘ 3 ) ↑ 2 )  =  ( ( 𝑐 ‘ 3 ) ↑ 2 ) ) | 
						
							| 47 | 35 | oveq1d | ⊢ ( 𝑎  =  ( 𝑐  ↾  ( 1 ... 3 ) )  →  ( ( 𝑎 ‘ 1 ) ↑ 2 )  =  ( ( 𝑐 ‘ 1 ) ↑ 2 ) ) | 
						
							| 48 | 47 | oveq1d | ⊢ ( 𝑎  =  ( 𝑐  ↾  ( 1 ... 3 ) )  →  ( ( ( 𝑎 ‘ 1 ) ↑ 2 )  −  1 )  =  ( ( ( 𝑐 ‘ 1 ) ↑ 2 )  −  1 ) ) | 
						
							| 49 |  | oveq1 | ⊢ ( 𝑏  =  ( 𝑐 ‘ 4 )  →  ( 𝑏 ↑ 2 )  =  ( ( 𝑐 ‘ 4 ) ↑ 2 ) ) | 
						
							| 50 | 48 49 | oveqan12d | ⊢ ( ( 𝑎  =  ( 𝑐  ↾  ( 1 ... 3 ) )  ∧  𝑏  =  ( 𝑐 ‘ 4 ) )  →  ( ( ( ( 𝑎 ‘ 1 ) ↑ 2 )  −  1 )  ·  ( 𝑏 ↑ 2 ) )  =  ( ( ( ( 𝑐 ‘ 1 ) ↑ 2 )  −  1 )  ·  ( ( 𝑐 ‘ 4 ) ↑ 2 ) ) ) | 
						
							| 51 | 46 50 | oveq12d | ⊢ ( ( 𝑎  =  ( 𝑐  ↾  ( 1 ... 3 ) )  ∧  𝑏  =  ( 𝑐 ‘ 4 ) )  →  ( ( ( 𝑎 ‘ 3 ) ↑ 2 )  −  ( ( ( ( 𝑎 ‘ 1 ) ↑ 2 )  −  1 )  ·  ( 𝑏 ↑ 2 ) ) )  =  ( ( ( 𝑐 ‘ 3 ) ↑ 2 )  −  ( ( ( ( 𝑐 ‘ 1 ) ↑ 2 )  −  1 )  ·  ( ( 𝑐 ‘ 4 ) ↑ 2 ) ) ) ) | 
						
							| 52 | 51 | eqeq1d | ⊢ ( ( 𝑎  =  ( 𝑐  ↾  ( 1 ... 3 ) )  ∧  𝑏  =  ( 𝑐 ‘ 4 ) )  →  ( ( ( ( 𝑎 ‘ 3 ) ↑ 2 )  −  ( ( ( ( 𝑎 ‘ 1 ) ↑ 2 )  −  1 )  ·  ( 𝑏 ↑ 2 ) ) )  =  1  ↔  ( ( ( 𝑐 ‘ 3 ) ↑ 2 )  −  ( ( ( ( 𝑐 ‘ 1 ) ↑ 2 )  −  1 )  ·  ( ( 𝑐 ‘ 4 ) ↑ 2 ) ) )  =  1 ) ) | 
						
							| 53 | 43 52 | anbi12d | ⊢ ( ( 𝑎  =  ( 𝑐  ↾  ( 1 ... 3 ) )  ∧  𝑏  =  ( 𝑐 ‘ 4 ) )  →  ( ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑏  =  ( ( 𝑎 ‘ 1 )  Yrm  ( 𝑎 ‘ 2 ) ) )  ∧  ( ( ( 𝑎 ‘ 3 ) ↑ 2 )  −  ( ( ( ( 𝑎 ‘ 1 ) ↑ 2 )  −  1 )  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  ↔  ( ( ( 𝑐 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑐 ‘ 4 )  =  ( ( 𝑐 ‘ 1 )  Yrm  ( 𝑐 ‘ 2 ) ) )  ∧  ( ( ( 𝑐 ‘ 3 ) ↑ 2 )  −  ( ( ( ( 𝑐 ‘ 1 ) ↑ 2 )  −  1 )  ·  ( ( 𝑐 ‘ 4 ) ↑ 2 ) ) )  =  1 ) ) ) | 
						
							| 54 | 28 29 53 | sbc2ie | ⊢ ( [ ( 𝑐  ↾  ( 1 ... 3 ) )  /  𝑎 ] [ ( 𝑐 ‘ 4 )  /  𝑏 ] ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑏  =  ( ( 𝑎 ‘ 1 )  Yrm  ( 𝑎 ‘ 2 ) ) )  ∧  ( ( ( 𝑎 ‘ 3 ) ↑ 2 )  −  ( ( ( ( 𝑎 ‘ 1 ) ↑ 2 )  −  1 )  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  ↔  ( ( ( 𝑐 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑐 ‘ 4 )  =  ( ( 𝑐 ‘ 1 )  Yrm  ( 𝑐 ‘ 2 ) ) )  ∧  ( ( ( 𝑐 ‘ 3 ) ↑ 2 )  −  ( ( ( ( 𝑐 ‘ 1 ) ↑ 2 )  −  1 )  ·  ( ( 𝑐 ‘ 4 ) ↑ 2 ) ) )  =  1 ) ) | 
						
							| 55 | 54 | rabbii | ⊢ { 𝑐  ∈  ( ℕ0  ↑m  ( 1 ... 4 ) )  ∣  [ ( 𝑐  ↾  ( 1 ... 3 ) )  /  𝑎 ] [ ( 𝑐 ‘ 4 )  /  𝑏 ] ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑏  =  ( ( 𝑎 ‘ 1 )  Yrm  ( 𝑎 ‘ 2 ) ) )  ∧  ( ( ( 𝑎 ‘ 3 ) ↑ 2 )  −  ( ( ( ( 𝑎 ‘ 1 ) ↑ 2 )  −  1 )  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) }  =  { 𝑐  ∈  ( ℕ0  ↑m  ( 1 ... 4 ) )  ∣  ( ( ( 𝑐 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑐 ‘ 4 )  =  ( ( 𝑐 ‘ 1 )  Yrm  ( 𝑐 ‘ 2 ) ) )  ∧  ( ( ( 𝑐 ‘ 3 ) ↑ 2 )  −  ( ( ( ( 𝑐 ‘ 1 ) ↑ 2 )  −  1 )  ·  ( ( 𝑐 ‘ 4 ) ↑ 2 ) ) )  =  1 ) } | 
						
							| 56 |  | 4nn0 | ⊢ 4  ∈  ℕ0 | 
						
							| 57 |  | rmydioph | ⊢ { 𝑏  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∣  ( ( 𝑏 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑏 ‘ 3 )  =  ( ( 𝑏 ‘ 1 )  Yrm  ( 𝑏 ‘ 2 ) ) ) }  ∈  ( Dioph ‘ 3 ) | 
						
							| 58 |  | simp1 | ⊢ ( ( ( 𝑏 ‘ 1 )  =  ( 𝑐 ‘ 1 )  ∧  ( 𝑏 ‘ 2 )  =  ( 𝑐 ‘ 2 )  ∧  ( 𝑏 ‘ 3 )  =  ( 𝑐 ‘ 4 ) )  →  ( 𝑏 ‘ 1 )  =  ( 𝑐 ‘ 1 ) ) | 
						
							| 59 | 58 | eleq1d | ⊢ ( ( ( 𝑏 ‘ 1 )  =  ( 𝑐 ‘ 1 )  ∧  ( 𝑏 ‘ 2 )  =  ( 𝑐 ‘ 2 )  ∧  ( 𝑏 ‘ 3 )  =  ( 𝑐 ‘ 4 ) )  →  ( ( 𝑏 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ↔  ( 𝑐 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 ) ) ) | 
						
							| 60 |  | simp3 | ⊢ ( ( ( 𝑏 ‘ 1 )  =  ( 𝑐 ‘ 1 )  ∧  ( 𝑏 ‘ 2 )  =  ( 𝑐 ‘ 2 )  ∧  ( 𝑏 ‘ 3 )  =  ( 𝑐 ‘ 4 ) )  →  ( 𝑏 ‘ 3 )  =  ( 𝑐 ‘ 4 ) ) | 
						
							| 61 |  | simp2 | ⊢ ( ( ( 𝑏 ‘ 1 )  =  ( 𝑐 ‘ 1 )  ∧  ( 𝑏 ‘ 2 )  =  ( 𝑐 ‘ 2 )  ∧  ( 𝑏 ‘ 3 )  =  ( 𝑐 ‘ 4 ) )  →  ( 𝑏 ‘ 2 )  =  ( 𝑐 ‘ 2 ) ) | 
						
							| 62 | 58 61 | oveq12d | ⊢ ( ( ( 𝑏 ‘ 1 )  =  ( 𝑐 ‘ 1 )  ∧  ( 𝑏 ‘ 2 )  =  ( 𝑐 ‘ 2 )  ∧  ( 𝑏 ‘ 3 )  =  ( 𝑐 ‘ 4 ) )  →  ( ( 𝑏 ‘ 1 )  Yrm  ( 𝑏 ‘ 2 ) )  =  ( ( 𝑐 ‘ 1 )  Yrm  ( 𝑐 ‘ 2 ) ) ) | 
						
							| 63 | 60 62 | eqeq12d | ⊢ ( ( ( 𝑏 ‘ 1 )  =  ( 𝑐 ‘ 1 )  ∧  ( 𝑏 ‘ 2 )  =  ( 𝑐 ‘ 2 )  ∧  ( 𝑏 ‘ 3 )  =  ( 𝑐 ‘ 4 ) )  →  ( ( 𝑏 ‘ 3 )  =  ( ( 𝑏 ‘ 1 )  Yrm  ( 𝑏 ‘ 2 ) )  ↔  ( 𝑐 ‘ 4 )  =  ( ( 𝑐 ‘ 1 )  Yrm  ( 𝑐 ‘ 2 ) ) ) ) | 
						
							| 64 | 59 63 | anbi12d | ⊢ ( ( ( 𝑏 ‘ 1 )  =  ( 𝑐 ‘ 1 )  ∧  ( 𝑏 ‘ 2 )  =  ( 𝑐 ‘ 2 )  ∧  ( 𝑏 ‘ 3 )  =  ( 𝑐 ‘ 4 ) )  →  ( ( ( 𝑏 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑏 ‘ 3 )  =  ( ( 𝑏 ‘ 1 )  Yrm  ( 𝑏 ‘ 2 ) ) )  ↔  ( ( 𝑐 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑐 ‘ 4 )  =  ( ( 𝑐 ‘ 1 )  Yrm  ( 𝑐 ‘ 2 ) ) ) ) ) | 
						
							| 65 |  | df-4 | ⊢ 4  =  ( 3  +  1 ) | 
						
							| 66 |  | ssid | ⊢ ( 1 ... 4 )  ⊆  ( 1 ... 4 ) | 
						
							| 67 | 65 66 | jm2.27dlem5 | ⊢ ( 1 ... 3 )  ⊆  ( 1 ... 4 ) | 
						
							| 68 | 3 67 | jm2.27dlem5 | ⊢ ( 1 ... 2 )  ⊆  ( 1 ... 4 ) | 
						
							| 69 | 30 68 | jm2.27dlem5 | ⊢ ( 1 ... 1 )  ⊆  ( 1 ... 4 ) | 
						
							| 70 | 69 33 | sselii | ⊢ 1  ∈  ( 1 ... 4 ) | 
						
							| 71 | 68 7 | sselii | ⊢ 2  ∈  ( 1 ... 4 ) | 
						
							| 72 |  | 4nn | ⊢ 4  ∈  ℕ | 
						
							| 73 | 72 | jm2.27dlem3 | ⊢ 4  ∈  ( 1 ... 4 ) | 
						
							| 74 | 64 70 71 73 | rabren3dioph | ⊢ ( ( 4  ∈  ℕ0  ∧  { 𝑏  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∣  ( ( 𝑏 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑏 ‘ 3 )  =  ( ( 𝑏 ‘ 1 )  Yrm  ( 𝑏 ‘ 2 ) ) ) }  ∈  ( Dioph ‘ 3 ) )  →  { 𝑐  ∈  ( ℕ0  ↑m  ( 1 ... 4 ) )  ∣  ( ( 𝑐 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑐 ‘ 4 )  =  ( ( 𝑐 ‘ 1 )  Yrm  ( 𝑐 ‘ 2 ) ) ) }  ∈  ( Dioph ‘ 4 ) ) | 
						
							| 75 | 56 57 74 | mp2an | ⊢ { 𝑐  ∈  ( ℕ0  ↑m  ( 1 ... 4 ) )  ∣  ( ( 𝑐 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑐 ‘ 4 )  =  ( ( 𝑐 ‘ 1 )  Yrm  ( 𝑐 ‘ 2 ) ) ) }  ∈  ( Dioph ‘ 4 ) | 
						
							| 76 |  | ovex | ⊢ ( 1 ... 4 )  ∈  V | 
						
							| 77 | 67 13 | sselii | ⊢ 3  ∈  ( 1 ... 4 ) | 
						
							| 78 |  | mzpproj | ⊢ ( ( ( 1 ... 4 )  ∈  V  ∧  3  ∈  ( 1 ... 4 ) )  →  ( 𝑐  ∈  ( ℤ  ↑m  ( 1 ... 4 ) )  ↦  ( 𝑐 ‘ 3 ) )  ∈  ( mzPoly ‘ ( 1 ... 4 ) ) ) | 
						
							| 79 | 76 77 78 | mp2an | ⊢ ( 𝑐  ∈  ( ℤ  ↑m  ( 1 ... 4 ) )  ↦  ( 𝑐 ‘ 3 ) )  ∈  ( mzPoly ‘ ( 1 ... 4 ) ) | 
						
							| 80 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 81 |  | mzpexpmpt | ⊢ ( ( ( 𝑐  ∈  ( ℤ  ↑m  ( 1 ... 4 ) )  ↦  ( 𝑐 ‘ 3 ) )  ∈  ( mzPoly ‘ ( 1 ... 4 ) )  ∧  2  ∈  ℕ0 )  →  ( 𝑐  ∈  ( ℤ  ↑m  ( 1 ... 4 ) )  ↦  ( ( 𝑐 ‘ 3 ) ↑ 2 ) )  ∈  ( mzPoly ‘ ( 1 ... 4 ) ) ) | 
						
							| 82 | 79 80 81 | mp2an | ⊢ ( 𝑐  ∈  ( ℤ  ↑m  ( 1 ... 4 ) )  ↦  ( ( 𝑐 ‘ 3 ) ↑ 2 ) )  ∈  ( mzPoly ‘ ( 1 ... 4 ) ) | 
						
							| 83 |  | mzpproj | ⊢ ( ( ( 1 ... 4 )  ∈  V  ∧  1  ∈  ( 1 ... 4 ) )  →  ( 𝑐  ∈  ( ℤ  ↑m  ( 1 ... 4 ) )  ↦  ( 𝑐 ‘ 1 ) )  ∈  ( mzPoly ‘ ( 1 ... 4 ) ) ) | 
						
							| 84 | 76 70 83 | mp2an | ⊢ ( 𝑐  ∈  ( ℤ  ↑m  ( 1 ... 4 ) )  ↦  ( 𝑐 ‘ 1 ) )  ∈  ( mzPoly ‘ ( 1 ... 4 ) ) | 
						
							| 85 |  | mzpexpmpt | ⊢ ( ( ( 𝑐  ∈  ( ℤ  ↑m  ( 1 ... 4 ) )  ↦  ( 𝑐 ‘ 1 ) )  ∈  ( mzPoly ‘ ( 1 ... 4 ) )  ∧  2  ∈  ℕ0 )  →  ( 𝑐  ∈  ( ℤ  ↑m  ( 1 ... 4 ) )  ↦  ( ( 𝑐 ‘ 1 ) ↑ 2 ) )  ∈  ( mzPoly ‘ ( 1 ... 4 ) ) ) | 
						
							| 86 | 84 80 85 | mp2an | ⊢ ( 𝑐  ∈  ( ℤ  ↑m  ( 1 ... 4 ) )  ↦  ( ( 𝑐 ‘ 1 ) ↑ 2 ) )  ∈  ( mzPoly ‘ ( 1 ... 4 ) ) | 
						
							| 87 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 88 |  | mzpconstmpt | ⊢ ( ( ( 1 ... 4 )  ∈  V  ∧  1  ∈  ℤ )  →  ( 𝑐  ∈  ( ℤ  ↑m  ( 1 ... 4 ) )  ↦  1 )  ∈  ( mzPoly ‘ ( 1 ... 4 ) ) ) | 
						
							| 89 | 76 87 88 | mp2an | ⊢ ( 𝑐  ∈  ( ℤ  ↑m  ( 1 ... 4 ) )  ↦  1 )  ∈  ( mzPoly ‘ ( 1 ... 4 ) ) | 
						
							| 90 |  | mzpsubmpt | ⊢ ( ( ( 𝑐  ∈  ( ℤ  ↑m  ( 1 ... 4 ) )  ↦  ( ( 𝑐 ‘ 1 ) ↑ 2 ) )  ∈  ( mzPoly ‘ ( 1 ... 4 ) )  ∧  ( 𝑐  ∈  ( ℤ  ↑m  ( 1 ... 4 ) )  ↦  1 )  ∈  ( mzPoly ‘ ( 1 ... 4 ) ) )  →  ( 𝑐  ∈  ( ℤ  ↑m  ( 1 ... 4 ) )  ↦  ( ( ( 𝑐 ‘ 1 ) ↑ 2 )  −  1 ) )  ∈  ( mzPoly ‘ ( 1 ... 4 ) ) ) | 
						
							| 91 | 86 89 90 | mp2an | ⊢ ( 𝑐  ∈  ( ℤ  ↑m  ( 1 ... 4 ) )  ↦  ( ( ( 𝑐 ‘ 1 ) ↑ 2 )  −  1 ) )  ∈  ( mzPoly ‘ ( 1 ... 4 ) ) | 
						
							| 92 |  | mzpproj | ⊢ ( ( ( 1 ... 4 )  ∈  V  ∧  4  ∈  ( 1 ... 4 ) )  →  ( 𝑐  ∈  ( ℤ  ↑m  ( 1 ... 4 ) )  ↦  ( 𝑐 ‘ 4 ) )  ∈  ( mzPoly ‘ ( 1 ... 4 ) ) ) | 
						
							| 93 | 76 73 92 | mp2an | ⊢ ( 𝑐  ∈  ( ℤ  ↑m  ( 1 ... 4 ) )  ↦  ( 𝑐 ‘ 4 ) )  ∈  ( mzPoly ‘ ( 1 ... 4 ) ) | 
						
							| 94 |  | mzpexpmpt | ⊢ ( ( ( 𝑐  ∈  ( ℤ  ↑m  ( 1 ... 4 ) )  ↦  ( 𝑐 ‘ 4 ) )  ∈  ( mzPoly ‘ ( 1 ... 4 ) )  ∧  2  ∈  ℕ0 )  →  ( 𝑐  ∈  ( ℤ  ↑m  ( 1 ... 4 ) )  ↦  ( ( 𝑐 ‘ 4 ) ↑ 2 ) )  ∈  ( mzPoly ‘ ( 1 ... 4 ) ) ) | 
						
							| 95 | 93 80 94 | mp2an | ⊢ ( 𝑐  ∈  ( ℤ  ↑m  ( 1 ... 4 ) )  ↦  ( ( 𝑐 ‘ 4 ) ↑ 2 ) )  ∈  ( mzPoly ‘ ( 1 ... 4 ) ) | 
						
							| 96 |  | mzpmulmpt | ⊢ ( ( ( 𝑐  ∈  ( ℤ  ↑m  ( 1 ... 4 ) )  ↦  ( ( ( 𝑐 ‘ 1 ) ↑ 2 )  −  1 ) )  ∈  ( mzPoly ‘ ( 1 ... 4 ) )  ∧  ( 𝑐  ∈  ( ℤ  ↑m  ( 1 ... 4 ) )  ↦  ( ( 𝑐 ‘ 4 ) ↑ 2 ) )  ∈  ( mzPoly ‘ ( 1 ... 4 ) ) )  →  ( 𝑐  ∈  ( ℤ  ↑m  ( 1 ... 4 ) )  ↦  ( ( ( ( 𝑐 ‘ 1 ) ↑ 2 )  −  1 )  ·  ( ( 𝑐 ‘ 4 ) ↑ 2 ) ) )  ∈  ( mzPoly ‘ ( 1 ... 4 ) ) ) | 
						
							| 97 | 91 95 96 | mp2an | ⊢ ( 𝑐  ∈  ( ℤ  ↑m  ( 1 ... 4 ) )  ↦  ( ( ( ( 𝑐 ‘ 1 ) ↑ 2 )  −  1 )  ·  ( ( 𝑐 ‘ 4 ) ↑ 2 ) ) )  ∈  ( mzPoly ‘ ( 1 ... 4 ) ) | 
						
							| 98 |  | mzpsubmpt | ⊢ ( ( ( 𝑐  ∈  ( ℤ  ↑m  ( 1 ... 4 ) )  ↦  ( ( 𝑐 ‘ 3 ) ↑ 2 ) )  ∈  ( mzPoly ‘ ( 1 ... 4 ) )  ∧  ( 𝑐  ∈  ( ℤ  ↑m  ( 1 ... 4 ) )  ↦  ( ( ( ( 𝑐 ‘ 1 ) ↑ 2 )  −  1 )  ·  ( ( 𝑐 ‘ 4 ) ↑ 2 ) ) )  ∈  ( mzPoly ‘ ( 1 ... 4 ) ) )  →  ( 𝑐  ∈  ( ℤ  ↑m  ( 1 ... 4 ) )  ↦  ( ( ( 𝑐 ‘ 3 ) ↑ 2 )  −  ( ( ( ( 𝑐 ‘ 1 ) ↑ 2 )  −  1 )  ·  ( ( 𝑐 ‘ 4 ) ↑ 2 ) ) ) )  ∈  ( mzPoly ‘ ( 1 ... 4 ) ) ) | 
						
							| 99 | 82 97 98 | mp2an | ⊢ ( 𝑐  ∈  ( ℤ  ↑m  ( 1 ... 4 ) )  ↦  ( ( ( 𝑐 ‘ 3 ) ↑ 2 )  −  ( ( ( ( 𝑐 ‘ 1 ) ↑ 2 )  −  1 )  ·  ( ( 𝑐 ‘ 4 ) ↑ 2 ) ) ) )  ∈  ( mzPoly ‘ ( 1 ... 4 ) ) | 
						
							| 100 |  | eqrabdioph | ⊢ ( ( 4  ∈  ℕ0  ∧  ( 𝑐  ∈  ( ℤ  ↑m  ( 1 ... 4 ) )  ↦  ( ( ( 𝑐 ‘ 3 ) ↑ 2 )  −  ( ( ( ( 𝑐 ‘ 1 ) ↑ 2 )  −  1 )  ·  ( ( 𝑐 ‘ 4 ) ↑ 2 ) ) ) )  ∈  ( mzPoly ‘ ( 1 ... 4 ) )  ∧  ( 𝑐  ∈  ( ℤ  ↑m  ( 1 ... 4 ) )  ↦  1 )  ∈  ( mzPoly ‘ ( 1 ... 4 ) ) )  →  { 𝑐  ∈  ( ℕ0  ↑m  ( 1 ... 4 ) )  ∣  ( ( ( 𝑐 ‘ 3 ) ↑ 2 )  −  ( ( ( ( 𝑐 ‘ 1 ) ↑ 2 )  −  1 )  ·  ( ( 𝑐 ‘ 4 ) ↑ 2 ) ) )  =  1 }  ∈  ( Dioph ‘ 4 ) ) | 
						
							| 101 | 56 99 89 100 | mp3an | ⊢ { 𝑐  ∈  ( ℕ0  ↑m  ( 1 ... 4 ) )  ∣  ( ( ( 𝑐 ‘ 3 ) ↑ 2 )  −  ( ( ( ( 𝑐 ‘ 1 ) ↑ 2 )  −  1 )  ·  ( ( 𝑐 ‘ 4 ) ↑ 2 ) ) )  =  1 }  ∈  ( Dioph ‘ 4 ) | 
						
							| 102 |  | anrabdioph | ⊢ ( ( { 𝑐  ∈  ( ℕ0  ↑m  ( 1 ... 4 ) )  ∣  ( ( 𝑐 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑐 ‘ 4 )  =  ( ( 𝑐 ‘ 1 )  Yrm  ( 𝑐 ‘ 2 ) ) ) }  ∈  ( Dioph ‘ 4 )  ∧  { 𝑐  ∈  ( ℕ0  ↑m  ( 1 ... 4 ) )  ∣  ( ( ( 𝑐 ‘ 3 ) ↑ 2 )  −  ( ( ( ( 𝑐 ‘ 1 ) ↑ 2 )  −  1 )  ·  ( ( 𝑐 ‘ 4 ) ↑ 2 ) ) )  =  1 }  ∈  ( Dioph ‘ 4 ) )  →  { 𝑐  ∈  ( ℕ0  ↑m  ( 1 ... 4 ) )  ∣  ( ( ( 𝑐 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑐 ‘ 4 )  =  ( ( 𝑐 ‘ 1 )  Yrm  ( 𝑐 ‘ 2 ) ) )  ∧  ( ( ( 𝑐 ‘ 3 ) ↑ 2 )  −  ( ( ( ( 𝑐 ‘ 1 ) ↑ 2 )  −  1 )  ·  ( ( 𝑐 ‘ 4 ) ↑ 2 ) ) )  =  1 ) }  ∈  ( Dioph ‘ 4 ) ) | 
						
							| 103 | 75 101 102 | mp2an | ⊢ { 𝑐  ∈  ( ℕ0  ↑m  ( 1 ... 4 ) )  ∣  ( ( ( 𝑐 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑐 ‘ 4 )  =  ( ( 𝑐 ‘ 1 )  Yrm  ( 𝑐 ‘ 2 ) ) )  ∧  ( ( ( 𝑐 ‘ 3 ) ↑ 2 )  −  ( ( ( ( 𝑐 ‘ 1 ) ↑ 2 )  −  1 )  ·  ( ( 𝑐 ‘ 4 ) ↑ 2 ) ) )  =  1 ) }  ∈  ( Dioph ‘ 4 ) | 
						
							| 104 | 55 103 | eqeltri | ⊢ { 𝑐  ∈  ( ℕ0  ↑m  ( 1 ... 4 ) )  ∣  [ ( 𝑐  ↾  ( 1 ... 3 ) )  /  𝑎 ] [ ( 𝑐 ‘ 4 )  /  𝑏 ] ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑏  =  ( ( 𝑎 ‘ 1 )  Yrm  ( 𝑎 ‘ 2 ) ) )  ∧  ( ( ( 𝑎 ‘ 3 ) ↑ 2 )  −  ( ( ( ( 𝑎 ‘ 1 ) ↑ 2 )  −  1 )  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) }  ∈  ( Dioph ‘ 4 ) | 
						
							| 105 | 65 | rexfrabdioph | ⊢ ( ( 3  ∈  ℕ0  ∧  { 𝑐  ∈  ( ℕ0  ↑m  ( 1 ... 4 ) )  ∣  [ ( 𝑐  ↾  ( 1 ... 3 ) )  /  𝑎 ] [ ( 𝑐 ‘ 4 )  /  𝑏 ] ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑏  =  ( ( 𝑎 ‘ 1 )  Yrm  ( 𝑎 ‘ 2 ) ) )  ∧  ( ( ( 𝑎 ‘ 3 ) ↑ 2 )  −  ( ( ( ( 𝑎 ‘ 1 ) ↑ 2 )  −  1 )  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) }  ∈  ( Dioph ‘ 4 ) )  →  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∣  ∃ 𝑏  ∈  ℕ0 ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑏  =  ( ( 𝑎 ‘ 1 )  Yrm  ( 𝑎 ‘ 2 ) ) )  ∧  ( ( ( 𝑎 ‘ 3 ) ↑ 2 )  −  ( ( ( ( 𝑎 ‘ 1 ) ↑ 2 )  −  1 )  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) }  ∈  ( Dioph ‘ 3 ) ) | 
						
							| 106 | 26 104 105 | mp2an | ⊢ { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∣  ∃ 𝑏  ∈  ℕ0 ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑏  =  ( ( 𝑎 ‘ 1 )  Yrm  ( 𝑎 ‘ 2 ) ) )  ∧  ( ( ( 𝑎 ‘ 3 ) ↑ 2 )  −  ( ( ( ( 𝑎 ‘ 1 ) ↑ 2 )  −  1 )  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) }  ∈  ( Dioph ‘ 3 ) | 
						
							| 107 | 25 106 | eqeltri | ⊢ { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∣  ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 )  Xrm  ( 𝑎 ‘ 2 ) ) ) }  ∈  ( Dioph ‘ 3 ) |