| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0sqcl |
|
| 2 |
1
|
3ad2ant3 |
|
| 3 |
2
|
nn0cnd |
|
| 4 |
|
simp1 |
|
| 5 |
|
nn0z |
|
| 6 |
5
|
3ad2ant2 |
|
| 7 |
|
frmx |
|
| 8 |
7
|
fovcl |
|
| 9 |
4 6 8
|
syl2anc |
|
| 10 |
|
nn0sqcl |
|
| 11 |
9 10
|
syl |
|
| 12 |
11
|
nn0cnd |
|
| 13 |
|
rmspecnonsq |
|
| 14 |
13
|
eldifad |
|
| 15 |
14
|
nnnn0d |
|
| 16 |
15
|
3ad2ant1 |
|
| 17 |
|
rmynn0 |
|
| 18 |
17
|
3adant3 |
|
| 19 |
|
nn0sqcl |
|
| 20 |
18 19
|
syl |
|
| 21 |
16 20
|
nn0mulcld |
|
| 22 |
21
|
nn0cnd |
|
| 23 |
3 12 22
|
subcan2ad |
|
| 24 |
|
rmxynorm |
|
| 25 |
4 6 24
|
syl2anc |
|
| 26 |
25
|
eqeq2d |
|
| 27 |
|
nn0re |
|
| 28 |
|
nn0ge0 |
|
| 29 |
27 28
|
jca |
|
| 30 |
29
|
3ad2ant3 |
|
| 31 |
|
nn0re |
|
| 32 |
|
nn0ge0 |
|
| 33 |
31 32
|
jca |
|
| 34 |
9 33
|
syl |
|
| 35 |
|
sq11 |
|
| 36 |
30 34 35
|
syl2anc |
|
| 37 |
23 26 36
|
3bitr3rd |
|
| 38 |
|
oveq1 |
|
| 39 |
38
|
oveq2d |
|
| 40 |
39
|
oveq2d |
|
| 41 |
40
|
eqeq1d |
|
| 42 |
41
|
ceqsrexv |
|
| 43 |
18 42
|
syl |
|
| 44 |
37 43
|
bitr4d |
|