Step |
Hyp |
Ref |
Expression |
1 |
|
rpnnen1lem.1 |
|- T = { n e. ZZ | ( n / k ) < x } |
2 |
|
rpnnen1lem.2 |
|- F = ( x e. RR |-> ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) ) |
3 |
|
rpnnen1lem.n |
|- NN e. _V |
4 |
|
rpnnen1lem.q |
|- QQ e. _V |
5 |
1 2 3 4
|
rpnnen1lem1 |
|- ( x e. RR -> ( F ` x ) e. ( QQ ^m NN ) ) |
6 |
4 3
|
elmap |
|- ( ( F ` x ) e. ( QQ ^m NN ) <-> ( F ` x ) : NN --> QQ ) |
7 |
5 6
|
sylib |
|- ( x e. RR -> ( F ` x ) : NN --> QQ ) |
8 |
|
frn |
|- ( ( F ` x ) : NN --> QQ -> ran ( F ` x ) C_ QQ ) |
9 |
|
qssre |
|- QQ C_ RR |
10 |
8 9
|
sstrdi |
|- ( ( F ` x ) : NN --> QQ -> ran ( F ` x ) C_ RR ) |
11 |
7 10
|
syl |
|- ( x e. RR -> ran ( F ` x ) C_ RR ) |
12 |
|
1nn |
|- 1 e. NN |
13 |
12
|
ne0ii |
|- NN =/= (/) |
14 |
|
fdm |
|- ( ( F ` x ) : NN --> QQ -> dom ( F ` x ) = NN ) |
15 |
14
|
neeq1d |
|- ( ( F ` x ) : NN --> QQ -> ( dom ( F ` x ) =/= (/) <-> NN =/= (/) ) ) |
16 |
13 15
|
mpbiri |
|- ( ( F ` x ) : NN --> QQ -> dom ( F ` x ) =/= (/) ) |
17 |
|
dm0rn0 |
|- ( dom ( F ` x ) = (/) <-> ran ( F ` x ) = (/) ) |
18 |
17
|
necon3bii |
|- ( dom ( F ` x ) =/= (/) <-> ran ( F ` x ) =/= (/) ) |
19 |
16 18
|
sylib |
|- ( ( F ` x ) : NN --> QQ -> ran ( F ` x ) =/= (/) ) |
20 |
7 19
|
syl |
|- ( x e. RR -> ran ( F ` x ) =/= (/) ) |
21 |
1 2 3 4
|
rpnnen1lem3 |
|- ( x e. RR -> A. n e. ran ( F ` x ) n <_ x ) |
22 |
|
breq2 |
|- ( y = x -> ( n <_ y <-> n <_ x ) ) |
23 |
22
|
ralbidv |
|- ( y = x -> ( A. n e. ran ( F ` x ) n <_ y <-> A. n e. ran ( F ` x ) n <_ x ) ) |
24 |
23
|
rspcev |
|- ( ( x e. RR /\ A. n e. ran ( F ` x ) n <_ x ) -> E. y e. RR A. n e. ran ( F ` x ) n <_ y ) |
25 |
21 24
|
mpdan |
|- ( x e. RR -> E. y e. RR A. n e. ran ( F ` x ) n <_ y ) |
26 |
|
suprcl |
|- ( ( ran ( F ` x ) C_ RR /\ ran ( F ` x ) =/= (/) /\ E. y e. RR A. n e. ran ( F ` x ) n <_ y ) -> sup ( ran ( F ` x ) , RR , < ) e. RR ) |
27 |
11 20 25 26
|
syl3anc |
|- ( x e. RR -> sup ( ran ( F ` x ) , RR , < ) e. RR ) |