Step |
Hyp |
Ref |
Expression |
1 |
|
rpnnen1lem.1 |
|- T = { n e. ZZ | ( n / k ) < x } |
2 |
|
rpnnen1lem.2 |
|- F = ( x e. RR |-> ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) ) |
3 |
|
rpnnen1lem.n |
|- NN e. _V |
4 |
|
rpnnen1lem.q |
|- QQ e. _V |
5 |
3
|
mptex |
|- ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) e. _V |
6 |
2
|
fvmpt2 |
|- ( ( x e. RR /\ ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) e. _V ) -> ( F ` x ) = ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) ) |
7 |
5 6
|
mpan2 |
|- ( x e. RR -> ( F ` x ) = ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) ) |
8 |
|
ssrab2 |
|- { n e. ZZ | ( n / k ) < x } C_ ZZ |
9 |
1 8
|
eqsstri |
|- T C_ ZZ |
10 |
9
|
a1i |
|- ( ( x e. RR /\ k e. NN ) -> T C_ ZZ ) |
11 |
|
nnre |
|- ( k e. NN -> k e. RR ) |
12 |
|
remulcl |
|- ( ( k e. RR /\ x e. RR ) -> ( k x. x ) e. RR ) |
13 |
12
|
ancoms |
|- ( ( x e. RR /\ k e. RR ) -> ( k x. x ) e. RR ) |
14 |
11 13
|
sylan2 |
|- ( ( x e. RR /\ k e. NN ) -> ( k x. x ) e. RR ) |
15 |
|
btwnz |
|- ( ( k x. x ) e. RR -> ( E. n e. ZZ n < ( k x. x ) /\ E. n e. ZZ ( k x. x ) < n ) ) |
16 |
15
|
simpld |
|- ( ( k x. x ) e. RR -> E. n e. ZZ n < ( k x. x ) ) |
17 |
14 16
|
syl |
|- ( ( x e. RR /\ k e. NN ) -> E. n e. ZZ n < ( k x. x ) ) |
18 |
|
zre |
|- ( n e. ZZ -> n e. RR ) |
19 |
18
|
adantl |
|- ( ( ( x e. RR /\ k e. NN ) /\ n e. ZZ ) -> n e. RR ) |
20 |
|
simpll |
|- ( ( ( x e. RR /\ k e. NN ) /\ n e. ZZ ) -> x e. RR ) |
21 |
|
nngt0 |
|- ( k e. NN -> 0 < k ) |
22 |
11 21
|
jca |
|- ( k e. NN -> ( k e. RR /\ 0 < k ) ) |
23 |
22
|
ad2antlr |
|- ( ( ( x e. RR /\ k e. NN ) /\ n e. ZZ ) -> ( k e. RR /\ 0 < k ) ) |
24 |
|
ltdivmul |
|- ( ( n e. RR /\ x e. RR /\ ( k e. RR /\ 0 < k ) ) -> ( ( n / k ) < x <-> n < ( k x. x ) ) ) |
25 |
19 20 23 24
|
syl3anc |
|- ( ( ( x e. RR /\ k e. NN ) /\ n e. ZZ ) -> ( ( n / k ) < x <-> n < ( k x. x ) ) ) |
26 |
25
|
rexbidva |
|- ( ( x e. RR /\ k e. NN ) -> ( E. n e. ZZ ( n / k ) < x <-> E. n e. ZZ n < ( k x. x ) ) ) |
27 |
17 26
|
mpbird |
|- ( ( x e. RR /\ k e. NN ) -> E. n e. ZZ ( n / k ) < x ) |
28 |
|
rabn0 |
|- ( { n e. ZZ | ( n / k ) < x } =/= (/) <-> E. n e. ZZ ( n / k ) < x ) |
29 |
27 28
|
sylibr |
|- ( ( x e. RR /\ k e. NN ) -> { n e. ZZ | ( n / k ) < x } =/= (/) ) |
30 |
1
|
neeq1i |
|- ( T =/= (/) <-> { n e. ZZ | ( n / k ) < x } =/= (/) ) |
31 |
29 30
|
sylibr |
|- ( ( x e. RR /\ k e. NN ) -> T =/= (/) ) |
32 |
1
|
rabeq2i |
|- ( n e. T <-> ( n e. ZZ /\ ( n / k ) < x ) ) |
33 |
11
|
ad2antlr |
|- ( ( ( x e. RR /\ k e. NN ) /\ n e. ZZ ) -> k e. RR ) |
34 |
33 20 12
|
syl2anc |
|- ( ( ( x e. RR /\ k e. NN ) /\ n e. ZZ ) -> ( k x. x ) e. RR ) |
35 |
|
ltle |
|- ( ( n e. RR /\ ( k x. x ) e. RR ) -> ( n < ( k x. x ) -> n <_ ( k x. x ) ) ) |
36 |
19 34 35
|
syl2anc |
|- ( ( ( x e. RR /\ k e. NN ) /\ n e. ZZ ) -> ( n < ( k x. x ) -> n <_ ( k x. x ) ) ) |
37 |
25 36
|
sylbid |
|- ( ( ( x e. RR /\ k e. NN ) /\ n e. ZZ ) -> ( ( n / k ) < x -> n <_ ( k x. x ) ) ) |
38 |
37
|
impr |
|- ( ( ( x e. RR /\ k e. NN ) /\ ( n e. ZZ /\ ( n / k ) < x ) ) -> n <_ ( k x. x ) ) |
39 |
32 38
|
sylan2b |
|- ( ( ( x e. RR /\ k e. NN ) /\ n e. T ) -> n <_ ( k x. x ) ) |
40 |
39
|
ralrimiva |
|- ( ( x e. RR /\ k e. NN ) -> A. n e. T n <_ ( k x. x ) ) |
41 |
|
breq2 |
|- ( y = ( k x. x ) -> ( n <_ y <-> n <_ ( k x. x ) ) ) |
42 |
41
|
ralbidv |
|- ( y = ( k x. x ) -> ( A. n e. T n <_ y <-> A. n e. T n <_ ( k x. x ) ) ) |
43 |
42
|
rspcev |
|- ( ( ( k x. x ) e. RR /\ A. n e. T n <_ ( k x. x ) ) -> E. y e. RR A. n e. T n <_ y ) |
44 |
14 40 43
|
syl2anc |
|- ( ( x e. RR /\ k e. NN ) -> E. y e. RR A. n e. T n <_ y ) |
45 |
|
suprzcl |
|- ( ( T C_ ZZ /\ T =/= (/) /\ E. y e. RR A. n e. T n <_ y ) -> sup ( T , RR , < ) e. T ) |
46 |
10 31 44 45
|
syl3anc |
|- ( ( x e. RR /\ k e. NN ) -> sup ( T , RR , < ) e. T ) |
47 |
9 46
|
sselid |
|- ( ( x e. RR /\ k e. NN ) -> sup ( T , RR , < ) e. ZZ ) |
48 |
|
znq |
|- ( ( sup ( T , RR , < ) e. ZZ /\ k e. NN ) -> ( sup ( T , RR , < ) / k ) e. QQ ) |
49 |
47 48
|
sylancom |
|- ( ( x e. RR /\ k e. NN ) -> ( sup ( T , RR , < ) / k ) e. QQ ) |
50 |
|
eqid |
|- ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) = ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) |
51 |
49 50
|
fmptd |
|- ( x e. RR -> ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) : NN --> QQ ) |
52 |
4 3
|
elmap |
|- ( ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) e. ( QQ ^m NN ) <-> ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) : NN --> QQ ) |
53 |
51 52
|
sylibr |
|- ( x e. RR -> ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) e. ( QQ ^m NN ) ) |
54 |
7 53
|
eqeltrd |
|- ( x e. RR -> ( F ` x ) e. ( QQ ^m NN ) ) |