| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpnnen1lem.1 |
⊢ 𝑇 = { 𝑛 ∈ ℤ ∣ ( 𝑛 / 𝑘 ) < 𝑥 } |
| 2 |
|
rpnnen1lem.2 |
⊢ 𝐹 = ( 𝑥 ∈ ℝ ↦ ( 𝑘 ∈ ℕ ↦ ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) ) |
| 3 |
|
rpnnen1lem.n |
⊢ ℕ ∈ V |
| 4 |
|
rpnnen1lem.q |
⊢ ℚ ∈ V |
| 5 |
1 2 3 4
|
rpnnen1lem1 |
⊢ ( 𝑥 ∈ ℝ → ( 𝐹 ‘ 𝑥 ) ∈ ( ℚ ↑m ℕ ) ) |
| 6 |
4 3
|
elmap |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( ℚ ↑m ℕ ) ↔ ( 𝐹 ‘ 𝑥 ) : ℕ ⟶ ℚ ) |
| 7 |
5 6
|
sylib |
⊢ ( 𝑥 ∈ ℝ → ( 𝐹 ‘ 𝑥 ) : ℕ ⟶ ℚ ) |
| 8 |
|
frn |
⊢ ( ( 𝐹 ‘ 𝑥 ) : ℕ ⟶ ℚ → ran ( 𝐹 ‘ 𝑥 ) ⊆ ℚ ) |
| 9 |
|
qssre |
⊢ ℚ ⊆ ℝ |
| 10 |
8 9
|
sstrdi |
⊢ ( ( 𝐹 ‘ 𝑥 ) : ℕ ⟶ ℚ → ran ( 𝐹 ‘ 𝑥 ) ⊆ ℝ ) |
| 11 |
7 10
|
syl |
⊢ ( 𝑥 ∈ ℝ → ran ( 𝐹 ‘ 𝑥 ) ⊆ ℝ ) |
| 12 |
|
1nn |
⊢ 1 ∈ ℕ |
| 13 |
12
|
ne0ii |
⊢ ℕ ≠ ∅ |
| 14 |
|
fdm |
⊢ ( ( 𝐹 ‘ 𝑥 ) : ℕ ⟶ ℚ → dom ( 𝐹 ‘ 𝑥 ) = ℕ ) |
| 15 |
14
|
neeq1d |
⊢ ( ( 𝐹 ‘ 𝑥 ) : ℕ ⟶ ℚ → ( dom ( 𝐹 ‘ 𝑥 ) ≠ ∅ ↔ ℕ ≠ ∅ ) ) |
| 16 |
13 15
|
mpbiri |
⊢ ( ( 𝐹 ‘ 𝑥 ) : ℕ ⟶ ℚ → dom ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) |
| 17 |
|
dm0rn0 |
⊢ ( dom ( 𝐹 ‘ 𝑥 ) = ∅ ↔ ran ( 𝐹 ‘ 𝑥 ) = ∅ ) |
| 18 |
17
|
necon3bii |
⊢ ( dom ( 𝐹 ‘ 𝑥 ) ≠ ∅ ↔ ran ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) |
| 19 |
16 18
|
sylib |
⊢ ( ( 𝐹 ‘ 𝑥 ) : ℕ ⟶ ℚ → ran ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) |
| 20 |
7 19
|
syl |
⊢ ( 𝑥 ∈ ℝ → ran ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) |
| 21 |
1 2 3 4
|
rpnnen1lem3 |
⊢ ( 𝑥 ∈ ℝ → ∀ 𝑛 ∈ ran ( 𝐹 ‘ 𝑥 ) 𝑛 ≤ 𝑥 ) |
| 22 |
|
breq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝑛 ≤ 𝑦 ↔ 𝑛 ≤ 𝑥 ) ) |
| 23 |
22
|
ralbidv |
⊢ ( 𝑦 = 𝑥 → ( ∀ 𝑛 ∈ ran ( 𝐹 ‘ 𝑥 ) 𝑛 ≤ 𝑦 ↔ ∀ 𝑛 ∈ ran ( 𝐹 ‘ 𝑥 ) 𝑛 ≤ 𝑥 ) ) |
| 24 |
23
|
rspcev |
⊢ ( ( 𝑥 ∈ ℝ ∧ ∀ 𝑛 ∈ ran ( 𝐹 ‘ 𝑥 ) 𝑛 ≤ 𝑥 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ran ( 𝐹 ‘ 𝑥 ) 𝑛 ≤ 𝑦 ) |
| 25 |
21 24
|
mpdan |
⊢ ( 𝑥 ∈ ℝ → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ran ( 𝐹 ‘ 𝑥 ) 𝑛 ≤ 𝑦 ) |
| 26 |
|
suprcl |
⊢ ( ( ran ( 𝐹 ‘ 𝑥 ) ⊆ ℝ ∧ ran ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ran ( 𝐹 ‘ 𝑥 ) 𝑛 ≤ 𝑦 ) → sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ∈ ℝ ) |
| 27 |
11 20 25 26
|
syl3anc |
⊢ ( 𝑥 ∈ ℝ → sup ( ran ( 𝐹 ‘ 𝑥 ) , ℝ , < ) ∈ ℝ ) |