Metamath Proof Explorer


Theorem rpnnen1lem4

Description: Lemma for rpnnen1 . (Contributed by Mario Carneiro, 12-May-2013) (Revised by NM, 13-Aug-2021) (Proof modification is discouraged.)

Ref Expression
Hypotheses rpnnen1lem.1 T=n|nk<x
rpnnen1lem.2 F=xksupT<k
rpnnen1lem.n V
rpnnen1lem.q V
Assertion rpnnen1lem4 xsupranFx<

Proof

Step Hyp Ref Expression
1 rpnnen1lem.1 T=n|nk<x
2 rpnnen1lem.2 F=xksupT<k
3 rpnnen1lem.n V
4 rpnnen1lem.q V
5 1 2 3 4 rpnnen1lem1 xFx
6 4 3 elmap FxFx:
7 5 6 sylib xFx:
8 frn Fx:ranFx
9 qssre
10 8 9 sstrdi Fx:ranFx
11 7 10 syl xranFx
12 1nn 1
13 12 ne0ii
14 fdm Fx:domFx=
15 14 neeq1d Fx:domFx
16 13 15 mpbiri Fx:domFx
17 dm0rn0 domFx=ranFx=
18 17 necon3bii domFxranFx
19 16 18 sylib Fx:ranFx
20 7 19 syl xranFx
21 1 2 3 4 rpnnen1lem3 xnranFxnx
22 breq2 y=xnynx
23 22 ralbidv y=xnranFxnynranFxnx
24 23 rspcev xnranFxnxynranFxny
25 21 24 mpdan xynranFxny
26 suprcl ranFxranFxynranFxnysupranFx<
27 11 20 25 26 syl3anc xsupranFx<