| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpnnen1lem.1 |
⊢ 𝑇 = { 𝑛 ∈ ℤ ∣ ( 𝑛 / 𝑘 ) < 𝑥 } |
| 2 |
|
rpnnen1lem.2 |
⊢ 𝐹 = ( 𝑥 ∈ ℝ ↦ ( 𝑘 ∈ ℕ ↦ ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) ) |
| 3 |
|
rpnnen1lem.n |
⊢ ℕ ∈ V |
| 4 |
|
rpnnen1lem.q |
⊢ ℚ ∈ V |
| 5 |
3
|
mptex |
⊢ ( 𝑘 ∈ ℕ ↦ ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) ∈ V |
| 6 |
2
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ ℝ ∧ ( 𝑘 ∈ ℕ ↦ ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) ∈ V ) → ( 𝐹 ‘ 𝑥 ) = ( 𝑘 ∈ ℕ ↦ ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) ) |
| 7 |
5 6
|
mpan2 |
⊢ ( 𝑥 ∈ ℝ → ( 𝐹 ‘ 𝑥 ) = ( 𝑘 ∈ ℕ ↦ ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) ) |
| 8 |
7
|
fveq1d |
⊢ ( 𝑥 ∈ ℝ → ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) = ( ( 𝑘 ∈ ℕ ↦ ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) ‘ 𝑘 ) ) |
| 9 |
|
ovex |
⊢ ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ∈ V |
| 10 |
|
eqid |
⊢ ( 𝑘 ∈ ℕ ↦ ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) = ( 𝑘 ∈ ℕ ↦ ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) |
| 11 |
10
|
fvmpt2 |
⊢ ( ( 𝑘 ∈ ℕ ∧ ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ∈ V ) → ( ( 𝑘 ∈ ℕ ↦ ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) ‘ 𝑘 ) = ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) |
| 12 |
9 11
|
mpan2 |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑘 ∈ ℕ ↦ ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) ‘ 𝑘 ) = ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) |
| 13 |
8 12
|
sylan9eq |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) = ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ) |
| 14 |
1
|
reqabi |
⊢ ( 𝑛 ∈ 𝑇 ↔ ( 𝑛 ∈ ℤ ∧ ( 𝑛 / 𝑘 ) < 𝑥 ) ) |
| 15 |
|
zre |
⊢ ( 𝑛 ∈ ℤ → 𝑛 ∈ ℝ ) |
| 16 |
15
|
adantl |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ℤ ) → 𝑛 ∈ ℝ ) |
| 17 |
|
simpll |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ℤ ) → 𝑥 ∈ ℝ ) |
| 18 |
|
nnre |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ ) |
| 19 |
|
nngt0 |
⊢ ( 𝑘 ∈ ℕ → 0 < 𝑘 ) |
| 20 |
18 19
|
jca |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 ∈ ℝ ∧ 0 < 𝑘 ) ) |
| 21 |
20
|
ad2antlr |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ℤ ) → ( 𝑘 ∈ ℝ ∧ 0 < 𝑘 ) ) |
| 22 |
|
ltdivmul |
⊢ ( ( 𝑛 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ ( 𝑘 ∈ ℝ ∧ 0 < 𝑘 ) ) → ( ( 𝑛 / 𝑘 ) < 𝑥 ↔ 𝑛 < ( 𝑘 · 𝑥 ) ) ) |
| 23 |
16 17 21 22
|
syl3anc |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ℤ ) → ( ( 𝑛 / 𝑘 ) < 𝑥 ↔ 𝑛 < ( 𝑘 · 𝑥 ) ) ) |
| 24 |
18
|
ad2antlr |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ℤ ) → 𝑘 ∈ ℝ ) |
| 25 |
|
remulcl |
⊢ ( ( 𝑘 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝑘 · 𝑥 ) ∈ ℝ ) |
| 26 |
24 17 25
|
syl2anc |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ℤ ) → ( 𝑘 · 𝑥 ) ∈ ℝ ) |
| 27 |
|
ltle |
⊢ ( ( 𝑛 ∈ ℝ ∧ ( 𝑘 · 𝑥 ) ∈ ℝ ) → ( 𝑛 < ( 𝑘 · 𝑥 ) → 𝑛 ≤ ( 𝑘 · 𝑥 ) ) ) |
| 28 |
16 26 27
|
syl2anc |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ℤ ) → ( 𝑛 < ( 𝑘 · 𝑥 ) → 𝑛 ≤ ( 𝑘 · 𝑥 ) ) ) |
| 29 |
23 28
|
sylbid |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ℤ ) → ( ( 𝑛 / 𝑘 ) < 𝑥 → 𝑛 ≤ ( 𝑘 · 𝑥 ) ) ) |
| 30 |
29
|
impr |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ℤ ∧ ( 𝑛 / 𝑘 ) < 𝑥 ) ) → 𝑛 ≤ ( 𝑘 · 𝑥 ) ) |
| 31 |
14 30
|
sylan2b |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ 𝑇 ) → 𝑛 ≤ ( 𝑘 · 𝑥 ) ) |
| 32 |
31
|
ralrimiva |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ∀ 𝑛 ∈ 𝑇 𝑛 ≤ ( 𝑘 · 𝑥 ) ) |
| 33 |
|
ssrab2 |
⊢ { 𝑛 ∈ ℤ ∣ ( 𝑛 / 𝑘 ) < 𝑥 } ⊆ ℤ |
| 34 |
1 33
|
eqsstri |
⊢ 𝑇 ⊆ ℤ |
| 35 |
|
zssre |
⊢ ℤ ⊆ ℝ |
| 36 |
34 35
|
sstri |
⊢ 𝑇 ⊆ ℝ |
| 37 |
36
|
a1i |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → 𝑇 ⊆ ℝ ) |
| 38 |
25
|
ancoms |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℝ ) → ( 𝑘 · 𝑥 ) ∈ ℝ ) |
| 39 |
18 38
|
sylan2 |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( 𝑘 · 𝑥 ) ∈ ℝ ) |
| 40 |
|
btwnz |
⊢ ( ( 𝑘 · 𝑥 ) ∈ ℝ → ( ∃ 𝑛 ∈ ℤ 𝑛 < ( 𝑘 · 𝑥 ) ∧ ∃ 𝑛 ∈ ℤ ( 𝑘 · 𝑥 ) < 𝑛 ) ) |
| 41 |
40
|
simpld |
⊢ ( ( 𝑘 · 𝑥 ) ∈ ℝ → ∃ 𝑛 ∈ ℤ 𝑛 < ( 𝑘 · 𝑥 ) ) |
| 42 |
39 41
|
syl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ∃ 𝑛 ∈ ℤ 𝑛 < ( 𝑘 · 𝑥 ) ) |
| 43 |
23
|
rexbidva |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( ∃ 𝑛 ∈ ℤ ( 𝑛 / 𝑘 ) < 𝑥 ↔ ∃ 𝑛 ∈ ℤ 𝑛 < ( 𝑘 · 𝑥 ) ) ) |
| 44 |
42 43
|
mpbird |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ∃ 𝑛 ∈ ℤ ( 𝑛 / 𝑘 ) < 𝑥 ) |
| 45 |
|
rabn0 |
⊢ ( { 𝑛 ∈ ℤ ∣ ( 𝑛 / 𝑘 ) < 𝑥 } ≠ ∅ ↔ ∃ 𝑛 ∈ ℤ ( 𝑛 / 𝑘 ) < 𝑥 ) |
| 46 |
44 45
|
sylibr |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → { 𝑛 ∈ ℤ ∣ ( 𝑛 / 𝑘 ) < 𝑥 } ≠ ∅ ) |
| 47 |
1
|
neeq1i |
⊢ ( 𝑇 ≠ ∅ ↔ { 𝑛 ∈ ℤ ∣ ( 𝑛 / 𝑘 ) < 𝑥 } ≠ ∅ ) |
| 48 |
46 47
|
sylibr |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → 𝑇 ≠ ∅ ) |
| 49 |
|
breq2 |
⊢ ( 𝑦 = ( 𝑘 · 𝑥 ) → ( 𝑛 ≤ 𝑦 ↔ 𝑛 ≤ ( 𝑘 · 𝑥 ) ) ) |
| 50 |
49
|
ralbidv |
⊢ ( 𝑦 = ( 𝑘 · 𝑥 ) → ( ∀ 𝑛 ∈ 𝑇 𝑛 ≤ 𝑦 ↔ ∀ 𝑛 ∈ 𝑇 𝑛 ≤ ( 𝑘 · 𝑥 ) ) ) |
| 51 |
50
|
rspcev |
⊢ ( ( ( 𝑘 · 𝑥 ) ∈ ℝ ∧ ∀ 𝑛 ∈ 𝑇 𝑛 ≤ ( 𝑘 · 𝑥 ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑇 𝑛 ≤ 𝑦 ) |
| 52 |
39 32 51
|
syl2anc |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑇 𝑛 ≤ 𝑦 ) |
| 53 |
|
suprleub |
⊢ ( ( ( 𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑇 𝑛 ≤ 𝑦 ) ∧ ( 𝑘 · 𝑥 ) ∈ ℝ ) → ( sup ( 𝑇 , ℝ , < ) ≤ ( 𝑘 · 𝑥 ) ↔ ∀ 𝑛 ∈ 𝑇 𝑛 ≤ ( 𝑘 · 𝑥 ) ) ) |
| 54 |
37 48 52 39 53
|
syl31anc |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( sup ( 𝑇 , ℝ , < ) ≤ ( 𝑘 · 𝑥 ) ↔ ∀ 𝑛 ∈ 𝑇 𝑛 ≤ ( 𝑘 · 𝑥 ) ) ) |
| 55 |
32 54
|
mpbird |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → sup ( 𝑇 , ℝ , < ) ≤ ( 𝑘 · 𝑥 ) ) |
| 56 |
1 2
|
rpnnen1lem2 |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → sup ( 𝑇 , ℝ , < ) ∈ ℤ ) |
| 57 |
56
|
zred |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → sup ( 𝑇 , ℝ , < ) ∈ ℝ ) |
| 58 |
|
simpl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → 𝑥 ∈ ℝ ) |
| 59 |
20
|
adantl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( 𝑘 ∈ ℝ ∧ 0 < 𝑘 ) ) |
| 60 |
|
ledivmul |
⊢ ( ( sup ( 𝑇 , ℝ , < ) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ ( 𝑘 ∈ ℝ ∧ 0 < 𝑘 ) ) → ( ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ≤ 𝑥 ↔ sup ( 𝑇 , ℝ , < ) ≤ ( 𝑘 · 𝑥 ) ) ) |
| 61 |
57 58 59 60
|
syl3anc |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ≤ 𝑥 ↔ sup ( 𝑇 , ℝ , < ) ≤ ( 𝑘 · 𝑥 ) ) ) |
| 62 |
55 61
|
mpbird |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( sup ( 𝑇 , ℝ , < ) / 𝑘 ) ≤ 𝑥 ) |
| 63 |
13 62
|
eqbrtrd |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) ≤ 𝑥 ) |
| 64 |
63
|
ralrimiva |
⊢ ( 𝑥 ∈ ℝ → ∀ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) ≤ 𝑥 ) |
| 65 |
1 2 3 4
|
rpnnen1lem1 |
⊢ ( 𝑥 ∈ ℝ → ( 𝐹 ‘ 𝑥 ) ∈ ( ℚ ↑m ℕ ) ) |
| 66 |
4 3
|
elmap |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( ℚ ↑m ℕ ) ↔ ( 𝐹 ‘ 𝑥 ) : ℕ ⟶ ℚ ) |
| 67 |
65 66
|
sylib |
⊢ ( 𝑥 ∈ ℝ → ( 𝐹 ‘ 𝑥 ) : ℕ ⟶ ℚ ) |
| 68 |
|
ffn |
⊢ ( ( 𝐹 ‘ 𝑥 ) : ℕ ⟶ ℚ → ( 𝐹 ‘ 𝑥 ) Fn ℕ ) |
| 69 |
|
breq1 |
⊢ ( 𝑛 = ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) → ( 𝑛 ≤ 𝑥 ↔ ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) ≤ 𝑥 ) ) |
| 70 |
69
|
ralrn |
⊢ ( ( 𝐹 ‘ 𝑥 ) Fn ℕ → ( ∀ 𝑛 ∈ ran ( 𝐹 ‘ 𝑥 ) 𝑛 ≤ 𝑥 ↔ ∀ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) ≤ 𝑥 ) ) |
| 71 |
67 68 70
|
3syl |
⊢ ( 𝑥 ∈ ℝ → ( ∀ 𝑛 ∈ ran ( 𝐹 ‘ 𝑥 ) 𝑛 ≤ 𝑥 ↔ ∀ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑘 ) ≤ 𝑥 ) ) |
| 72 |
64 71
|
mpbird |
⊢ ( 𝑥 ∈ ℝ → ∀ 𝑛 ∈ ran ( 𝐹 ‘ 𝑥 ) 𝑛 ≤ 𝑥 ) |