| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ruc.1 |
|- ( ph -> F : NN --> RR ) |
| 2 |
|
ruc.2 |
|- ( ph -> D = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) ) |
| 3 |
|
ruclem1.3 |
|- ( ph -> A e. RR ) |
| 4 |
|
ruclem1.4 |
|- ( ph -> B e. RR ) |
| 5 |
|
ruclem1.5 |
|- ( ph -> M e. RR ) |
| 6 |
|
ruclem1.6 |
|- X = ( 1st ` ( <. A , B >. D M ) ) |
| 7 |
|
ruclem1.7 |
|- Y = ( 2nd ` ( <. A , B >. D M ) ) |
| 8 |
2
|
oveqd |
|- ( ph -> ( <. A , B >. D M ) = ( <. A , B >. ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) M ) ) |
| 9 |
3 4
|
opelxpd |
|- ( ph -> <. A , B >. e. ( RR X. RR ) ) |
| 10 |
|
simpr |
|- ( ( x = <. A , B >. /\ y = M ) -> y = M ) |
| 11 |
10
|
breq2d |
|- ( ( x = <. A , B >. /\ y = M ) -> ( m < y <-> m < M ) ) |
| 12 |
|
simpl |
|- ( ( x = <. A , B >. /\ y = M ) -> x = <. A , B >. ) |
| 13 |
12
|
fveq2d |
|- ( ( x = <. A , B >. /\ y = M ) -> ( 1st ` x ) = ( 1st ` <. A , B >. ) ) |
| 14 |
13
|
opeq1d |
|- ( ( x = <. A , B >. /\ y = M ) -> <. ( 1st ` x ) , m >. = <. ( 1st ` <. A , B >. ) , m >. ) |
| 15 |
12
|
fveq2d |
|- ( ( x = <. A , B >. /\ y = M ) -> ( 2nd ` x ) = ( 2nd ` <. A , B >. ) ) |
| 16 |
15
|
oveq2d |
|- ( ( x = <. A , B >. /\ y = M ) -> ( m + ( 2nd ` x ) ) = ( m + ( 2nd ` <. A , B >. ) ) ) |
| 17 |
16
|
oveq1d |
|- ( ( x = <. A , B >. /\ y = M ) -> ( ( m + ( 2nd ` x ) ) / 2 ) = ( ( m + ( 2nd ` <. A , B >. ) ) / 2 ) ) |
| 18 |
17 15
|
opeq12d |
|- ( ( x = <. A , B >. /\ y = M ) -> <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. = <. ( ( m + ( 2nd ` <. A , B >. ) ) / 2 ) , ( 2nd ` <. A , B >. ) >. ) |
| 19 |
11 14 18
|
ifbieq12d |
|- ( ( x = <. A , B >. /\ y = M ) -> if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) = if ( m < M , <. ( 1st ` <. A , B >. ) , m >. , <. ( ( m + ( 2nd ` <. A , B >. ) ) / 2 ) , ( 2nd ` <. A , B >. ) >. ) ) |
| 20 |
19
|
csbeq2dv |
|- ( ( x = <. A , B >. /\ y = M ) -> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) = [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < M , <. ( 1st ` <. A , B >. ) , m >. , <. ( ( m + ( 2nd ` <. A , B >. ) ) / 2 ) , ( 2nd ` <. A , B >. ) >. ) ) |
| 21 |
13 15
|
oveq12d |
|- ( ( x = <. A , B >. /\ y = M ) -> ( ( 1st ` x ) + ( 2nd ` x ) ) = ( ( 1st ` <. A , B >. ) + ( 2nd ` <. A , B >. ) ) ) |
| 22 |
21
|
oveq1d |
|- ( ( x = <. A , B >. /\ y = M ) -> ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) = ( ( ( 1st ` <. A , B >. ) + ( 2nd ` <. A , B >. ) ) / 2 ) ) |
| 23 |
22
|
csbeq1d |
|- ( ( x = <. A , B >. /\ y = M ) -> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < M , <. ( 1st ` <. A , B >. ) , m >. , <. ( ( m + ( 2nd ` <. A , B >. ) ) / 2 ) , ( 2nd ` <. A , B >. ) >. ) = [_ ( ( ( 1st ` <. A , B >. ) + ( 2nd ` <. A , B >. ) ) / 2 ) / m ]_ if ( m < M , <. ( 1st ` <. A , B >. ) , m >. , <. ( ( m + ( 2nd ` <. A , B >. ) ) / 2 ) , ( 2nd ` <. A , B >. ) >. ) ) |
| 24 |
20 23
|
eqtrd |
|- ( ( x = <. A , B >. /\ y = M ) -> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) = [_ ( ( ( 1st ` <. A , B >. ) + ( 2nd ` <. A , B >. ) ) / 2 ) / m ]_ if ( m < M , <. ( 1st ` <. A , B >. ) , m >. , <. ( ( m + ( 2nd ` <. A , B >. ) ) / 2 ) , ( 2nd ` <. A , B >. ) >. ) ) |
| 25 |
|
eqid |
|- ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) |
| 26 |
|
opex |
|- <. ( 1st ` <. A , B >. ) , m >. e. _V |
| 27 |
|
opex |
|- <. ( ( m + ( 2nd ` <. A , B >. ) ) / 2 ) , ( 2nd ` <. A , B >. ) >. e. _V |
| 28 |
26 27
|
ifex |
|- if ( m < M , <. ( 1st ` <. A , B >. ) , m >. , <. ( ( m + ( 2nd ` <. A , B >. ) ) / 2 ) , ( 2nd ` <. A , B >. ) >. ) e. _V |
| 29 |
28
|
csbex |
|- [_ ( ( ( 1st ` <. A , B >. ) + ( 2nd ` <. A , B >. ) ) / 2 ) / m ]_ if ( m < M , <. ( 1st ` <. A , B >. ) , m >. , <. ( ( m + ( 2nd ` <. A , B >. ) ) / 2 ) , ( 2nd ` <. A , B >. ) >. ) e. _V |
| 30 |
24 25 29
|
ovmpoa |
|- ( ( <. A , B >. e. ( RR X. RR ) /\ M e. RR ) -> ( <. A , B >. ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) M ) = [_ ( ( ( 1st ` <. A , B >. ) + ( 2nd ` <. A , B >. ) ) / 2 ) / m ]_ if ( m < M , <. ( 1st ` <. A , B >. ) , m >. , <. ( ( m + ( 2nd ` <. A , B >. ) ) / 2 ) , ( 2nd ` <. A , B >. ) >. ) ) |
| 31 |
9 5 30
|
syl2anc |
|- ( ph -> ( <. A , B >. ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) M ) = [_ ( ( ( 1st ` <. A , B >. ) + ( 2nd ` <. A , B >. ) ) / 2 ) / m ]_ if ( m < M , <. ( 1st ` <. A , B >. ) , m >. , <. ( ( m + ( 2nd ` <. A , B >. ) ) / 2 ) , ( 2nd ` <. A , B >. ) >. ) ) |
| 32 |
8 31
|
eqtrd |
|- ( ph -> ( <. A , B >. D M ) = [_ ( ( ( 1st ` <. A , B >. ) + ( 2nd ` <. A , B >. ) ) / 2 ) / m ]_ if ( m < M , <. ( 1st ` <. A , B >. ) , m >. , <. ( ( m + ( 2nd ` <. A , B >. ) ) / 2 ) , ( 2nd ` <. A , B >. ) >. ) ) |
| 33 |
|
op1stg |
|- ( ( A e. RR /\ B e. RR ) -> ( 1st ` <. A , B >. ) = A ) |
| 34 |
3 4 33
|
syl2anc |
|- ( ph -> ( 1st ` <. A , B >. ) = A ) |
| 35 |
|
op2ndg |
|- ( ( A e. RR /\ B e. RR ) -> ( 2nd ` <. A , B >. ) = B ) |
| 36 |
3 4 35
|
syl2anc |
|- ( ph -> ( 2nd ` <. A , B >. ) = B ) |
| 37 |
34 36
|
oveq12d |
|- ( ph -> ( ( 1st ` <. A , B >. ) + ( 2nd ` <. A , B >. ) ) = ( A + B ) ) |
| 38 |
37
|
oveq1d |
|- ( ph -> ( ( ( 1st ` <. A , B >. ) + ( 2nd ` <. A , B >. ) ) / 2 ) = ( ( A + B ) / 2 ) ) |
| 39 |
38
|
csbeq1d |
|- ( ph -> [_ ( ( ( 1st ` <. A , B >. ) + ( 2nd ` <. A , B >. ) ) / 2 ) / m ]_ if ( m < M , <. ( 1st ` <. A , B >. ) , m >. , <. ( ( m + ( 2nd ` <. A , B >. ) ) / 2 ) , ( 2nd ` <. A , B >. ) >. ) = [_ ( ( A + B ) / 2 ) / m ]_ if ( m < M , <. ( 1st ` <. A , B >. ) , m >. , <. ( ( m + ( 2nd ` <. A , B >. ) ) / 2 ) , ( 2nd ` <. A , B >. ) >. ) ) |
| 40 |
|
ovex |
|- ( ( A + B ) / 2 ) e. _V |
| 41 |
|
breq1 |
|- ( m = ( ( A + B ) / 2 ) -> ( m < M <-> ( ( A + B ) / 2 ) < M ) ) |
| 42 |
|
opeq2 |
|- ( m = ( ( A + B ) / 2 ) -> <. ( 1st ` <. A , B >. ) , m >. = <. ( 1st ` <. A , B >. ) , ( ( A + B ) / 2 ) >. ) |
| 43 |
|
oveq1 |
|- ( m = ( ( A + B ) / 2 ) -> ( m + ( 2nd ` <. A , B >. ) ) = ( ( ( A + B ) / 2 ) + ( 2nd ` <. A , B >. ) ) ) |
| 44 |
43
|
oveq1d |
|- ( m = ( ( A + B ) / 2 ) -> ( ( m + ( 2nd ` <. A , B >. ) ) / 2 ) = ( ( ( ( A + B ) / 2 ) + ( 2nd ` <. A , B >. ) ) / 2 ) ) |
| 45 |
44
|
opeq1d |
|- ( m = ( ( A + B ) / 2 ) -> <. ( ( m + ( 2nd ` <. A , B >. ) ) / 2 ) , ( 2nd ` <. A , B >. ) >. = <. ( ( ( ( A + B ) / 2 ) + ( 2nd ` <. A , B >. ) ) / 2 ) , ( 2nd ` <. A , B >. ) >. ) |
| 46 |
41 42 45
|
ifbieq12d |
|- ( m = ( ( A + B ) / 2 ) -> if ( m < M , <. ( 1st ` <. A , B >. ) , m >. , <. ( ( m + ( 2nd ` <. A , B >. ) ) / 2 ) , ( 2nd ` <. A , B >. ) >. ) = if ( ( ( A + B ) / 2 ) < M , <. ( 1st ` <. A , B >. ) , ( ( A + B ) / 2 ) >. , <. ( ( ( ( A + B ) / 2 ) + ( 2nd ` <. A , B >. ) ) / 2 ) , ( 2nd ` <. A , B >. ) >. ) ) |
| 47 |
40 46
|
csbie |
|- [_ ( ( A + B ) / 2 ) / m ]_ if ( m < M , <. ( 1st ` <. A , B >. ) , m >. , <. ( ( m + ( 2nd ` <. A , B >. ) ) / 2 ) , ( 2nd ` <. A , B >. ) >. ) = if ( ( ( A + B ) / 2 ) < M , <. ( 1st ` <. A , B >. ) , ( ( A + B ) / 2 ) >. , <. ( ( ( ( A + B ) / 2 ) + ( 2nd ` <. A , B >. ) ) / 2 ) , ( 2nd ` <. A , B >. ) >. ) |
| 48 |
34
|
opeq1d |
|- ( ph -> <. ( 1st ` <. A , B >. ) , ( ( A + B ) / 2 ) >. = <. A , ( ( A + B ) / 2 ) >. ) |
| 49 |
36
|
oveq2d |
|- ( ph -> ( ( ( A + B ) / 2 ) + ( 2nd ` <. A , B >. ) ) = ( ( ( A + B ) / 2 ) + B ) ) |
| 50 |
49
|
oveq1d |
|- ( ph -> ( ( ( ( A + B ) / 2 ) + ( 2nd ` <. A , B >. ) ) / 2 ) = ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) |
| 51 |
50 36
|
opeq12d |
|- ( ph -> <. ( ( ( ( A + B ) / 2 ) + ( 2nd ` <. A , B >. ) ) / 2 ) , ( 2nd ` <. A , B >. ) >. = <. ( ( ( ( A + B ) / 2 ) + B ) / 2 ) , B >. ) |
| 52 |
48 51
|
ifeq12d |
|- ( ph -> if ( ( ( A + B ) / 2 ) < M , <. ( 1st ` <. A , B >. ) , ( ( A + B ) / 2 ) >. , <. ( ( ( ( A + B ) / 2 ) + ( 2nd ` <. A , B >. ) ) / 2 ) , ( 2nd ` <. A , B >. ) >. ) = if ( ( ( A + B ) / 2 ) < M , <. A , ( ( A + B ) / 2 ) >. , <. ( ( ( ( A + B ) / 2 ) + B ) / 2 ) , B >. ) ) |
| 53 |
47 52
|
eqtrid |
|- ( ph -> [_ ( ( A + B ) / 2 ) / m ]_ if ( m < M , <. ( 1st ` <. A , B >. ) , m >. , <. ( ( m + ( 2nd ` <. A , B >. ) ) / 2 ) , ( 2nd ` <. A , B >. ) >. ) = if ( ( ( A + B ) / 2 ) < M , <. A , ( ( A + B ) / 2 ) >. , <. ( ( ( ( A + B ) / 2 ) + B ) / 2 ) , B >. ) ) |
| 54 |
39 53
|
eqtrd |
|- ( ph -> [_ ( ( ( 1st ` <. A , B >. ) + ( 2nd ` <. A , B >. ) ) / 2 ) / m ]_ if ( m < M , <. ( 1st ` <. A , B >. ) , m >. , <. ( ( m + ( 2nd ` <. A , B >. ) ) / 2 ) , ( 2nd ` <. A , B >. ) >. ) = if ( ( ( A + B ) / 2 ) < M , <. A , ( ( A + B ) / 2 ) >. , <. ( ( ( ( A + B ) / 2 ) + B ) / 2 ) , B >. ) ) |
| 55 |
32 54
|
eqtrd |
|- ( ph -> ( <. A , B >. D M ) = if ( ( ( A + B ) / 2 ) < M , <. A , ( ( A + B ) / 2 ) >. , <. ( ( ( ( A + B ) / 2 ) + B ) / 2 ) , B >. ) ) |
| 56 |
3 4
|
readdcld |
|- ( ph -> ( A + B ) e. RR ) |
| 57 |
56
|
rehalfcld |
|- ( ph -> ( ( A + B ) / 2 ) e. RR ) |
| 58 |
3 57
|
opelxpd |
|- ( ph -> <. A , ( ( A + B ) / 2 ) >. e. ( RR X. RR ) ) |
| 59 |
57 4
|
readdcld |
|- ( ph -> ( ( ( A + B ) / 2 ) + B ) e. RR ) |
| 60 |
59
|
rehalfcld |
|- ( ph -> ( ( ( ( A + B ) / 2 ) + B ) / 2 ) e. RR ) |
| 61 |
60 4
|
opelxpd |
|- ( ph -> <. ( ( ( ( A + B ) / 2 ) + B ) / 2 ) , B >. e. ( RR X. RR ) ) |
| 62 |
58 61
|
ifcld |
|- ( ph -> if ( ( ( A + B ) / 2 ) < M , <. A , ( ( A + B ) / 2 ) >. , <. ( ( ( ( A + B ) / 2 ) + B ) / 2 ) , B >. ) e. ( RR X. RR ) ) |
| 63 |
55 62
|
eqeltrd |
|- ( ph -> ( <. A , B >. D M ) e. ( RR X. RR ) ) |
| 64 |
55
|
fveq2d |
|- ( ph -> ( 1st ` ( <. A , B >. D M ) ) = ( 1st ` if ( ( ( A + B ) / 2 ) < M , <. A , ( ( A + B ) / 2 ) >. , <. ( ( ( ( A + B ) / 2 ) + B ) / 2 ) , B >. ) ) ) |
| 65 |
|
fvif |
|- ( 1st ` if ( ( ( A + B ) / 2 ) < M , <. A , ( ( A + B ) / 2 ) >. , <. ( ( ( ( A + B ) / 2 ) + B ) / 2 ) , B >. ) ) = if ( ( ( A + B ) / 2 ) < M , ( 1st ` <. A , ( ( A + B ) / 2 ) >. ) , ( 1st ` <. ( ( ( ( A + B ) / 2 ) + B ) / 2 ) , B >. ) ) |
| 66 |
|
op1stg |
|- ( ( A e. RR /\ ( ( A + B ) / 2 ) e. _V ) -> ( 1st ` <. A , ( ( A + B ) / 2 ) >. ) = A ) |
| 67 |
3 40 66
|
sylancl |
|- ( ph -> ( 1st ` <. A , ( ( A + B ) / 2 ) >. ) = A ) |
| 68 |
|
ovex |
|- ( ( ( ( A + B ) / 2 ) + B ) / 2 ) e. _V |
| 69 |
|
op1stg |
|- ( ( ( ( ( ( A + B ) / 2 ) + B ) / 2 ) e. _V /\ B e. RR ) -> ( 1st ` <. ( ( ( ( A + B ) / 2 ) + B ) / 2 ) , B >. ) = ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) |
| 70 |
68 4 69
|
sylancr |
|- ( ph -> ( 1st ` <. ( ( ( ( A + B ) / 2 ) + B ) / 2 ) , B >. ) = ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) |
| 71 |
67 70
|
ifeq12d |
|- ( ph -> if ( ( ( A + B ) / 2 ) < M , ( 1st ` <. A , ( ( A + B ) / 2 ) >. ) , ( 1st ` <. ( ( ( ( A + B ) / 2 ) + B ) / 2 ) , B >. ) ) = if ( ( ( A + B ) / 2 ) < M , A , ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) ) |
| 72 |
65 71
|
eqtrid |
|- ( ph -> ( 1st ` if ( ( ( A + B ) / 2 ) < M , <. A , ( ( A + B ) / 2 ) >. , <. ( ( ( ( A + B ) / 2 ) + B ) / 2 ) , B >. ) ) = if ( ( ( A + B ) / 2 ) < M , A , ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) ) |
| 73 |
64 72
|
eqtrd |
|- ( ph -> ( 1st ` ( <. A , B >. D M ) ) = if ( ( ( A + B ) / 2 ) < M , A , ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) ) |
| 74 |
6 73
|
eqtrid |
|- ( ph -> X = if ( ( ( A + B ) / 2 ) < M , A , ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) ) |
| 75 |
55
|
fveq2d |
|- ( ph -> ( 2nd ` ( <. A , B >. D M ) ) = ( 2nd ` if ( ( ( A + B ) / 2 ) < M , <. A , ( ( A + B ) / 2 ) >. , <. ( ( ( ( A + B ) / 2 ) + B ) / 2 ) , B >. ) ) ) |
| 76 |
|
fvif |
|- ( 2nd ` if ( ( ( A + B ) / 2 ) < M , <. A , ( ( A + B ) / 2 ) >. , <. ( ( ( ( A + B ) / 2 ) + B ) / 2 ) , B >. ) ) = if ( ( ( A + B ) / 2 ) < M , ( 2nd ` <. A , ( ( A + B ) / 2 ) >. ) , ( 2nd ` <. ( ( ( ( A + B ) / 2 ) + B ) / 2 ) , B >. ) ) |
| 77 |
|
op2ndg |
|- ( ( A e. RR /\ ( ( A + B ) / 2 ) e. _V ) -> ( 2nd ` <. A , ( ( A + B ) / 2 ) >. ) = ( ( A + B ) / 2 ) ) |
| 78 |
3 40 77
|
sylancl |
|- ( ph -> ( 2nd ` <. A , ( ( A + B ) / 2 ) >. ) = ( ( A + B ) / 2 ) ) |
| 79 |
|
op2ndg |
|- ( ( ( ( ( ( A + B ) / 2 ) + B ) / 2 ) e. _V /\ B e. RR ) -> ( 2nd ` <. ( ( ( ( A + B ) / 2 ) + B ) / 2 ) , B >. ) = B ) |
| 80 |
68 4 79
|
sylancr |
|- ( ph -> ( 2nd ` <. ( ( ( ( A + B ) / 2 ) + B ) / 2 ) , B >. ) = B ) |
| 81 |
78 80
|
ifeq12d |
|- ( ph -> if ( ( ( A + B ) / 2 ) < M , ( 2nd ` <. A , ( ( A + B ) / 2 ) >. ) , ( 2nd ` <. ( ( ( ( A + B ) / 2 ) + B ) / 2 ) , B >. ) ) = if ( ( ( A + B ) / 2 ) < M , ( ( A + B ) / 2 ) , B ) ) |
| 82 |
76 81
|
eqtrid |
|- ( ph -> ( 2nd ` if ( ( ( A + B ) / 2 ) < M , <. A , ( ( A + B ) / 2 ) >. , <. ( ( ( ( A + B ) / 2 ) + B ) / 2 ) , B >. ) ) = if ( ( ( A + B ) / 2 ) < M , ( ( A + B ) / 2 ) , B ) ) |
| 83 |
75 82
|
eqtrd |
|- ( ph -> ( 2nd ` ( <. A , B >. D M ) ) = if ( ( ( A + B ) / 2 ) < M , ( ( A + B ) / 2 ) , B ) ) |
| 84 |
7 83
|
eqtrid |
|- ( ph -> Y = if ( ( ( A + B ) / 2 ) < M , ( ( A + B ) / 2 ) , B ) ) |
| 85 |
63 74 84
|
3jca |
|- ( ph -> ( ( <. A , B >. D M ) e. ( RR X. RR ) /\ X = if ( ( ( A + B ) / 2 ) < M , A , ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) /\ Y = if ( ( ( A + B ) / 2 ) < M , ( ( A + B ) / 2 ) , B ) ) ) |