Metamath Proof Explorer


Theorem ruclem1

Description: Lemma for ruc (the reals are uncountable). Substitutions for the function D . (Contributed by Mario Carneiro, 28-May-2014) (Revised by Fan Zheng, 6-Jun-2016)

Ref Expression
Hypotheses ruc.1 ( 𝜑𝐹 : ℕ ⟶ ℝ )
ruc.2 ( 𝜑𝐷 = ( 𝑥 ∈ ( ℝ × ℝ ) , 𝑦 ∈ ℝ ↦ ( ( ( 1st𝑥 ) + ( 2nd𝑥 ) ) / 2 ) / 𝑚 if ( 𝑚 < 𝑦 , ⟨ ( 1st𝑥 ) , 𝑚 ⟩ , ⟨ ( ( 𝑚 + ( 2nd𝑥 ) ) / 2 ) , ( 2nd𝑥 ) ⟩ ) ) )
ruclem1.3 ( 𝜑𝐴 ∈ ℝ )
ruclem1.4 ( 𝜑𝐵 ∈ ℝ )
ruclem1.5 ( 𝜑𝑀 ∈ ℝ )
ruclem1.6 𝑋 = ( 1st ‘ ( ⟨ 𝐴 , 𝐵𝐷 𝑀 ) )
ruclem1.7 𝑌 = ( 2nd ‘ ( ⟨ 𝐴 , 𝐵𝐷 𝑀 ) )
Assertion ruclem1 ( 𝜑 → ( ( ⟨ 𝐴 , 𝐵𝐷 𝑀 ) ∈ ( ℝ × ℝ ) ∧ 𝑋 = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , 𝐴 , ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) ∧ 𝑌 = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , ( ( 𝐴 + 𝐵 ) / 2 ) , 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 ruc.1 ( 𝜑𝐹 : ℕ ⟶ ℝ )
2 ruc.2 ( 𝜑𝐷 = ( 𝑥 ∈ ( ℝ × ℝ ) , 𝑦 ∈ ℝ ↦ ( ( ( 1st𝑥 ) + ( 2nd𝑥 ) ) / 2 ) / 𝑚 if ( 𝑚 < 𝑦 , ⟨ ( 1st𝑥 ) , 𝑚 ⟩ , ⟨ ( ( 𝑚 + ( 2nd𝑥 ) ) / 2 ) , ( 2nd𝑥 ) ⟩ ) ) )
3 ruclem1.3 ( 𝜑𝐴 ∈ ℝ )
4 ruclem1.4 ( 𝜑𝐵 ∈ ℝ )
5 ruclem1.5 ( 𝜑𝑀 ∈ ℝ )
6 ruclem1.6 𝑋 = ( 1st ‘ ( ⟨ 𝐴 , 𝐵𝐷 𝑀 ) )
7 ruclem1.7 𝑌 = ( 2nd ‘ ( ⟨ 𝐴 , 𝐵𝐷 𝑀 ) )
8 2 oveqd ( 𝜑 → ( ⟨ 𝐴 , 𝐵𝐷 𝑀 ) = ( ⟨ 𝐴 , 𝐵 ⟩ ( 𝑥 ∈ ( ℝ × ℝ ) , 𝑦 ∈ ℝ ↦ ( ( ( 1st𝑥 ) + ( 2nd𝑥 ) ) / 2 ) / 𝑚 if ( 𝑚 < 𝑦 , ⟨ ( 1st𝑥 ) , 𝑚 ⟩ , ⟨ ( ( 𝑚 + ( 2nd𝑥 ) ) / 2 ) , ( 2nd𝑥 ) ⟩ ) ) 𝑀 ) )
9 3 4 opelxpd ( 𝜑 → ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ℝ × ℝ ) )
10 simpr ( ( 𝑥 = ⟨ 𝐴 , 𝐵 ⟩ ∧ 𝑦 = 𝑀 ) → 𝑦 = 𝑀 )
11 10 breq2d ( ( 𝑥 = ⟨ 𝐴 , 𝐵 ⟩ ∧ 𝑦 = 𝑀 ) → ( 𝑚 < 𝑦𝑚 < 𝑀 ) )
12 simpl ( ( 𝑥 = ⟨ 𝐴 , 𝐵 ⟩ ∧ 𝑦 = 𝑀 ) → 𝑥 = ⟨ 𝐴 , 𝐵 ⟩ )
13 12 fveq2d ( ( 𝑥 = ⟨ 𝐴 , 𝐵 ⟩ ∧ 𝑦 = 𝑀 ) → ( 1st𝑥 ) = ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) )
14 13 opeq1d ( ( 𝑥 = ⟨ 𝐴 , 𝐵 ⟩ ∧ 𝑦 = 𝑀 ) → ⟨ ( 1st𝑥 ) , 𝑚 ⟩ = ⟨ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) , 𝑚 ⟩ )
15 12 fveq2d ( ( 𝑥 = ⟨ 𝐴 , 𝐵 ⟩ ∧ 𝑦 = 𝑀 ) → ( 2nd𝑥 ) = ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) )
16 15 oveq2d ( ( 𝑥 = ⟨ 𝐴 , 𝐵 ⟩ ∧ 𝑦 = 𝑀 ) → ( 𝑚 + ( 2nd𝑥 ) ) = ( 𝑚 + ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) )
17 16 oveq1d ( ( 𝑥 = ⟨ 𝐴 , 𝐵 ⟩ ∧ 𝑦 = 𝑀 ) → ( ( 𝑚 + ( 2nd𝑥 ) ) / 2 ) = ( ( 𝑚 + ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) / 2 ) )
18 17 15 opeq12d ( ( 𝑥 = ⟨ 𝐴 , 𝐵 ⟩ ∧ 𝑦 = 𝑀 ) → ⟨ ( ( 𝑚 + ( 2nd𝑥 ) ) / 2 ) , ( 2nd𝑥 ) ⟩ = ⟨ ( ( 𝑚 + ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) / 2 ) , ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ⟩ )
19 11 14 18 ifbieq12d ( ( 𝑥 = ⟨ 𝐴 , 𝐵 ⟩ ∧ 𝑦 = 𝑀 ) → if ( 𝑚 < 𝑦 , ⟨ ( 1st𝑥 ) , 𝑚 ⟩ , ⟨ ( ( 𝑚 + ( 2nd𝑥 ) ) / 2 ) , ( 2nd𝑥 ) ⟩ ) = if ( 𝑚 < 𝑀 , ⟨ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) , 𝑚 ⟩ , ⟨ ( ( 𝑚 + ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) / 2 ) , ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ⟩ ) )
20 19 csbeq2dv ( ( 𝑥 = ⟨ 𝐴 , 𝐵 ⟩ ∧ 𝑦 = 𝑀 ) → ( ( ( 1st𝑥 ) + ( 2nd𝑥 ) ) / 2 ) / 𝑚 if ( 𝑚 < 𝑦 , ⟨ ( 1st𝑥 ) , 𝑚 ⟩ , ⟨ ( ( 𝑚 + ( 2nd𝑥 ) ) / 2 ) , ( 2nd𝑥 ) ⟩ ) = ( ( ( 1st𝑥 ) + ( 2nd𝑥 ) ) / 2 ) / 𝑚 if ( 𝑚 < 𝑀 , ⟨ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) , 𝑚 ⟩ , ⟨ ( ( 𝑚 + ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) / 2 ) , ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ⟩ ) )
21 13 15 oveq12d ( ( 𝑥 = ⟨ 𝐴 , 𝐵 ⟩ ∧ 𝑦 = 𝑀 ) → ( ( 1st𝑥 ) + ( 2nd𝑥 ) ) = ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) + ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) )
22 21 oveq1d ( ( 𝑥 = ⟨ 𝐴 , 𝐵 ⟩ ∧ 𝑦 = 𝑀 ) → ( ( ( 1st𝑥 ) + ( 2nd𝑥 ) ) / 2 ) = ( ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) + ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) / 2 ) )
23 22 csbeq1d ( ( 𝑥 = ⟨ 𝐴 , 𝐵 ⟩ ∧ 𝑦 = 𝑀 ) → ( ( ( 1st𝑥 ) + ( 2nd𝑥 ) ) / 2 ) / 𝑚 if ( 𝑚 < 𝑀 , ⟨ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) , 𝑚 ⟩ , ⟨ ( ( 𝑚 + ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) / 2 ) , ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ⟩ ) = ( ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) + ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) / 2 ) / 𝑚 if ( 𝑚 < 𝑀 , ⟨ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) , 𝑚 ⟩ , ⟨ ( ( 𝑚 + ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) / 2 ) , ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ⟩ ) )
24 20 23 eqtrd ( ( 𝑥 = ⟨ 𝐴 , 𝐵 ⟩ ∧ 𝑦 = 𝑀 ) → ( ( ( 1st𝑥 ) + ( 2nd𝑥 ) ) / 2 ) / 𝑚 if ( 𝑚 < 𝑦 , ⟨ ( 1st𝑥 ) , 𝑚 ⟩ , ⟨ ( ( 𝑚 + ( 2nd𝑥 ) ) / 2 ) , ( 2nd𝑥 ) ⟩ ) = ( ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) + ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) / 2 ) / 𝑚 if ( 𝑚 < 𝑀 , ⟨ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) , 𝑚 ⟩ , ⟨ ( ( 𝑚 + ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) / 2 ) , ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ⟩ ) )
25 eqid ( 𝑥 ∈ ( ℝ × ℝ ) , 𝑦 ∈ ℝ ↦ ( ( ( 1st𝑥 ) + ( 2nd𝑥 ) ) / 2 ) / 𝑚 if ( 𝑚 < 𝑦 , ⟨ ( 1st𝑥 ) , 𝑚 ⟩ , ⟨ ( ( 𝑚 + ( 2nd𝑥 ) ) / 2 ) , ( 2nd𝑥 ) ⟩ ) ) = ( 𝑥 ∈ ( ℝ × ℝ ) , 𝑦 ∈ ℝ ↦ ( ( ( 1st𝑥 ) + ( 2nd𝑥 ) ) / 2 ) / 𝑚 if ( 𝑚 < 𝑦 , ⟨ ( 1st𝑥 ) , 𝑚 ⟩ , ⟨ ( ( 𝑚 + ( 2nd𝑥 ) ) / 2 ) , ( 2nd𝑥 ) ⟩ ) )
26 opex ⟨ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) , 𝑚 ⟩ ∈ V
27 opex ⟨ ( ( 𝑚 + ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) / 2 ) , ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ⟩ ∈ V
28 26 27 ifex if ( 𝑚 < 𝑀 , ⟨ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) , 𝑚 ⟩ , ⟨ ( ( 𝑚 + ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) / 2 ) , ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ⟩ ) ∈ V
29 28 csbex ( ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) + ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) / 2 ) / 𝑚 if ( 𝑚 < 𝑀 , ⟨ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) , 𝑚 ⟩ , ⟨ ( ( 𝑚 + ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) / 2 ) , ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ⟩ ) ∈ V
30 24 25 29 ovmpoa ( ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ℝ × ℝ ) ∧ 𝑀 ∈ ℝ ) → ( ⟨ 𝐴 , 𝐵 ⟩ ( 𝑥 ∈ ( ℝ × ℝ ) , 𝑦 ∈ ℝ ↦ ( ( ( 1st𝑥 ) + ( 2nd𝑥 ) ) / 2 ) / 𝑚 if ( 𝑚 < 𝑦 , ⟨ ( 1st𝑥 ) , 𝑚 ⟩ , ⟨ ( ( 𝑚 + ( 2nd𝑥 ) ) / 2 ) , ( 2nd𝑥 ) ⟩ ) ) 𝑀 ) = ( ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) + ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) / 2 ) / 𝑚 if ( 𝑚 < 𝑀 , ⟨ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) , 𝑚 ⟩ , ⟨ ( ( 𝑚 + ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) / 2 ) , ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ⟩ ) )
31 9 5 30 syl2anc ( 𝜑 → ( ⟨ 𝐴 , 𝐵 ⟩ ( 𝑥 ∈ ( ℝ × ℝ ) , 𝑦 ∈ ℝ ↦ ( ( ( 1st𝑥 ) + ( 2nd𝑥 ) ) / 2 ) / 𝑚 if ( 𝑚 < 𝑦 , ⟨ ( 1st𝑥 ) , 𝑚 ⟩ , ⟨ ( ( 𝑚 + ( 2nd𝑥 ) ) / 2 ) , ( 2nd𝑥 ) ⟩ ) ) 𝑀 ) = ( ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) + ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) / 2 ) / 𝑚 if ( 𝑚 < 𝑀 , ⟨ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) , 𝑚 ⟩ , ⟨ ( ( 𝑚 + ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) / 2 ) , ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ⟩ ) )
32 8 31 eqtrd ( 𝜑 → ( ⟨ 𝐴 , 𝐵𝐷 𝑀 ) = ( ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) + ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) / 2 ) / 𝑚 if ( 𝑚 < 𝑀 , ⟨ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) , 𝑚 ⟩ , ⟨ ( ( 𝑚 + ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) / 2 ) , ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ⟩ ) )
33 op1stg ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) = 𝐴 )
34 3 4 33 syl2anc ( 𝜑 → ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) = 𝐴 )
35 op2ndg ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) = 𝐵 )
36 3 4 35 syl2anc ( 𝜑 → ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) = 𝐵 )
37 34 36 oveq12d ( 𝜑 → ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) + ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) = ( 𝐴 + 𝐵 ) )
38 37 oveq1d ( 𝜑 → ( ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) + ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) / 2 ) = ( ( 𝐴 + 𝐵 ) / 2 ) )
39 38 csbeq1d ( 𝜑 ( ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) + ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) / 2 ) / 𝑚 if ( 𝑚 < 𝑀 , ⟨ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) , 𝑚 ⟩ , ⟨ ( ( 𝑚 + ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) / 2 ) , ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ⟩ ) = ( ( 𝐴 + 𝐵 ) / 2 ) / 𝑚 if ( 𝑚 < 𝑀 , ⟨ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) , 𝑚 ⟩ , ⟨ ( ( 𝑚 + ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) / 2 ) , ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ⟩ ) )
40 ovex ( ( 𝐴 + 𝐵 ) / 2 ) ∈ V
41 breq1 ( 𝑚 = ( ( 𝐴 + 𝐵 ) / 2 ) → ( 𝑚 < 𝑀 ↔ ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 ) )
42 opeq2 ( 𝑚 = ( ( 𝐴 + 𝐵 ) / 2 ) → ⟨ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) , 𝑚 ⟩ = ⟨ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) , ( ( 𝐴 + 𝐵 ) / 2 ) ⟩ )
43 oveq1 ( 𝑚 = ( ( 𝐴 + 𝐵 ) / 2 ) → ( 𝑚 + ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) = ( ( ( 𝐴 + 𝐵 ) / 2 ) + ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) )
44 43 oveq1d ( 𝑚 = ( ( 𝐴 + 𝐵 ) / 2 ) → ( ( 𝑚 + ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) / 2 ) = ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) / 2 ) )
45 44 opeq1d ( 𝑚 = ( ( 𝐴 + 𝐵 ) / 2 ) → ⟨ ( ( 𝑚 + ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) / 2 ) , ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ⟩ = ⟨ ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) / 2 ) , ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ⟩ )
46 41 42 45 ifbieq12d ( 𝑚 = ( ( 𝐴 + 𝐵 ) / 2 ) → if ( 𝑚 < 𝑀 , ⟨ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) , 𝑚 ⟩ , ⟨ ( ( 𝑚 + ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) / 2 ) , ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ⟩ ) = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , ⟨ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) , ( ( 𝐴 + 𝐵 ) / 2 ) ⟩ , ⟨ ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) / 2 ) , ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ⟩ ) )
47 40 46 csbie ( ( 𝐴 + 𝐵 ) / 2 ) / 𝑚 if ( 𝑚 < 𝑀 , ⟨ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) , 𝑚 ⟩ , ⟨ ( ( 𝑚 + ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) / 2 ) , ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ⟩ ) = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , ⟨ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) , ( ( 𝐴 + 𝐵 ) / 2 ) ⟩ , ⟨ ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) / 2 ) , ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ⟩ )
48 34 opeq1d ( 𝜑 → ⟨ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) , ( ( 𝐴 + 𝐵 ) / 2 ) ⟩ = ⟨ 𝐴 , ( ( 𝐴 + 𝐵 ) / 2 ) ⟩ )
49 36 oveq2d ( 𝜑 → ( ( ( 𝐴 + 𝐵 ) / 2 ) + ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) = ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) )
50 49 oveq1d ( 𝜑 → ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) / 2 ) = ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) )
51 50 36 opeq12d ( 𝜑 → ⟨ ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) / 2 ) , ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ⟩ = ⟨ ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) , 𝐵 ⟩ )
52 48 51 ifeq12d ( 𝜑 → if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , ⟨ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) , ( ( 𝐴 + 𝐵 ) / 2 ) ⟩ , ⟨ ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) / 2 ) , ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ⟩ ) = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , ⟨ 𝐴 , ( ( 𝐴 + 𝐵 ) / 2 ) ⟩ , ⟨ ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) , 𝐵 ⟩ ) )
53 47 52 syl5eq ( 𝜑 ( ( 𝐴 + 𝐵 ) / 2 ) / 𝑚 if ( 𝑚 < 𝑀 , ⟨ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) , 𝑚 ⟩ , ⟨ ( ( 𝑚 + ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) / 2 ) , ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ⟩ ) = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , ⟨ 𝐴 , ( ( 𝐴 + 𝐵 ) / 2 ) ⟩ , ⟨ ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) , 𝐵 ⟩ ) )
54 39 53 eqtrd ( 𝜑 ( ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) + ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) / 2 ) / 𝑚 if ( 𝑚 < 𝑀 , ⟨ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) , 𝑚 ⟩ , ⟨ ( ( 𝑚 + ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) / 2 ) , ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ⟩ ) = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , ⟨ 𝐴 , ( ( 𝐴 + 𝐵 ) / 2 ) ⟩ , ⟨ ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) , 𝐵 ⟩ ) )
55 32 54 eqtrd ( 𝜑 → ( ⟨ 𝐴 , 𝐵𝐷 𝑀 ) = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , ⟨ 𝐴 , ( ( 𝐴 + 𝐵 ) / 2 ) ⟩ , ⟨ ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) , 𝐵 ⟩ ) )
56 3 4 readdcld ( 𝜑 → ( 𝐴 + 𝐵 ) ∈ ℝ )
57 56 rehalfcld ( 𝜑 → ( ( 𝐴 + 𝐵 ) / 2 ) ∈ ℝ )
58 3 57 opelxpd ( 𝜑 → ⟨ 𝐴 , ( ( 𝐴 + 𝐵 ) / 2 ) ⟩ ∈ ( ℝ × ℝ ) )
59 57 4 readdcld ( 𝜑 → ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) ∈ ℝ )
60 59 rehalfcld ( 𝜑 → ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ∈ ℝ )
61 60 4 opelxpd ( 𝜑 → ⟨ ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) , 𝐵 ⟩ ∈ ( ℝ × ℝ ) )
62 58 61 ifcld ( 𝜑 → if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , ⟨ 𝐴 , ( ( 𝐴 + 𝐵 ) / 2 ) ⟩ , ⟨ ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) , 𝐵 ⟩ ) ∈ ( ℝ × ℝ ) )
63 55 62 eqeltrd ( 𝜑 → ( ⟨ 𝐴 , 𝐵𝐷 𝑀 ) ∈ ( ℝ × ℝ ) )
64 55 fveq2d ( 𝜑 → ( 1st ‘ ( ⟨ 𝐴 , 𝐵𝐷 𝑀 ) ) = ( 1st ‘ if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , ⟨ 𝐴 , ( ( 𝐴 + 𝐵 ) / 2 ) ⟩ , ⟨ ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) , 𝐵 ⟩ ) ) )
65 fvif ( 1st ‘ if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , ⟨ 𝐴 , ( ( 𝐴 + 𝐵 ) / 2 ) ⟩ , ⟨ ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) , 𝐵 ⟩ ) ) = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , ( 1st ‘ ⟨ 𝐴 , ( ( 𝐴 + 𝐵 ) / 2 ) ⟩ ) , ( 1st ‘ ⟨ ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) , 𝐵 ⟩ ) )
66 op1stg ( ( 𝐴 ∈ ℝ ∧ ( ( 𝐴 + 𝐵 ) / 2 ) ∈ V ) → ( 1st ‘ ⟨ 𝐴 , ( ( 𝐴 + 𝐵 ) / 2 ) ⟩ ) = 𝐴 )
67 3 40 66 sylancl ( 𝜑 → ( 1st ‘ ⟨ 𝐴 , ( ( 𝐴 + 𝐵 ) / 2 ) ⟩ ) = 𝐴 )
68 ovex ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ∈ V
69 op1stg ( ( ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ∈ V ∧ 𝐵 ∈ ℝ ) → ( 1st ‘ ⟨ ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) , 𝐵 ⟩ ) = ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) )
70 68 4 69 sylancr ( 𝜑 → ( 1st ‘ ⟨ ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) , 𝐵 ⟩ ) = ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) )
71 67 70 ifeq12d ( 𝜑 → if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , ( 1st ‘ ⟨ 𝐴 , ( ( 𝐴 + 𝐵 ) / 2 ) ⟩ ) , ( 1st ‘ ⟨ ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) , 𝐵 ⟩ ) ) = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , 𝐴 , ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) )
72 65 71 syl5eq ( 𝜑 → ( 1st ‘ if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , ⟨ 𝐴 , ( ( 𝐴 + 𝐵 ) / 2 ) ⟩ , ⟨ ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) , 𝐵 ⟩ ) ) = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , 𝐴 , ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) )
73 64 72 eqtrd ( 𝜑 → ( 1st ‘ ( ⟨ 𝐴 , 𝐵𝐷 𝑀 ) ) = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , 𝐴 , ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) )
74 6 73 syl5eq ( 𝜑𝑋 = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , 𝐴 , ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) )
75 55 fveq2d ( 𝜑 → ( 2nd ‘ ( ⟨ 𝐴 , 𝐵𝐷 𝑀 ) ) = ( 2nd ‘ if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , ⟨ 𝐴 , ( ( 𝐴 + 𝐵 ) / 2 ) ⟩ , ⟨ ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) , 𝐵 ⟩ ) ) )
76 fvif ( 2nd ‘ if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , ⟨ 𝐴 , ( ( 𝐴 + 𝐵 ) / 2 ) ⟩ , ⟨ ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) , 𝐵 ⟩ ) ) = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , ( 2nd ‘ ⟨ 𝐴 , ( ( 𝐴 + 𝐵 ) / 2 ) ⟩ ) , ( 2nd ‘ ⟨ ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) , 𝐵 ⟩ ) )
77 op2ndg ( ( 𝐴 ∈ ℝ ∧ ( ( 𝐴 + 𝐵 ) / 2 ) ∈ V ) → ( 2nd ‘ ⟨ 𝐴 , ( ( 𝐴 + 𝐵 ) / 2 ) ⟩ ) = ( ( 𝐴 + 𝐵 ) / 2 ) )
78 3 40 77 sylancl ( 𝜑 → ( 2nd ‘ ⟨ 𝐴 , ( ( 𝐴 + 𝐵 ) / 2 ) ⟩ ) = ( ( 𝐴 + 𝐵 ) / 2 ) )
79 op2ndg ( ( ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ∈ V ∧ 𝐵 ∈ ℝ ) → ( 2nd ‘ ⟨ ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) , 𝐵 ⟩ ) = 𝐵 )
80 68 4 79 sylancr ( 𝜑 → ( 2nd ‘ ⟨ ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) , 𝐵 ⟩ ) = 𝐵 )
81 78 80 ifeq12d ( 𝜑 → if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , ( 2nd ‘ ⟨ 𝐴 , ( ( 𝐴 + 𝐵 ) / 2 ) ⟩ ) , ( 2nd ‘ ⟨ ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) , 𝐵 ⟩ ) ) = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , ( ( 𝐴 + 𝐵 ) / 2 ) , 𝐵 ) )
82 76 81 syl5eq ( 𝜑 → ( 2nd ‘ if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , ⟨ 𝐴 , ( ( 𝐴 + 𝐵 ) / 2 ) ⟩ , ⟨ ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) , 𝐵 ⟩ ) ) = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , ( ( 𝐴 + 𝐵 ) / 2 ) , 𝐵 ) )
83 75 82 eqtrd ( 𝜑 → ( 2nd ‘ ( ⟨ 𝐴 , 𝐵𝐷 𝑀 ) ) = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , ( ( 𝐴 + 𝐵 ) / 2 ) , 𝐵 ) )
84 7 83 syl5eq ( 𝜑𝑌 = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , ( ( 𝐴 + 𝐵 ) / 2 ) , 𝐵 ) )
85 63 74 84 3jca ( 𝜑 → ( ( ⟨ 𝐴 , 𝐵𝐷 𝑀 ) ∈ ( ℝ × ℝ ) ∧ 𝑋 = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , 𝐴 , ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) ∧ 𝑌 = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , ( ( 𝐴 + 𝐵 ) / 2 ) , 𝐵 ) ) )