Step |
Hyp |
Ref |
Expression |
1 |
|
signsv.p |
|- .+^ = ( a e. { -u 1 , 0 , 1 } , b e. { -u 1 , 0 , 1 } |-> if ( b = 0 , a , b ) ) |
2 |
|
signsv.w |
|- W = { <. ( Base ` ndx ) , { -u 1 , 0 , 1 } >. , <. ( +g ` ndx ) , .+^ >. } |
3 |
|
signsv.t |
|- T = ( f e. Word RR |-> ( n e. ( 0 ..^ ( # ` f ) ) |-> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( f ` i ) ) ) ) ) ) |
4 |
|
signsv.v |
|- V = ( f e. Word RR |-> sum_ j e. ( 1 ..^ ( # ` f ) ) if ( ( ( T ` f ) ` j ) =/= ( ( T ` f ) ` ( j - 1 ) ) , 1 , 0 ) ) |
5 |
|
signsvf.e |
|- ( ph -> E e. ( Word RR \ { (/) } ) ) |
6 |
|
signsvf.0 |
|- ( ph -> ( E ` 0 ) =/= 0 ) |
7 |
|
signsvf.f |
|- ( ph -> F = ( E ++ <" A "> ) ) |
8 |
|
signsvf.a |
|- ( ph -> A e. RR ) |
9 |
|
signsvf.n |
|- N = ( # ` E ) |
10 |
|
signsvf.b |
|- B = ( E ` ( N - 1 ) ) |
11 |
8
|
recnd |
|- ( ph -> A e. CC ) |
12 |
5
|
eldifad |
|- ( ph -> E e. Word RR ) |
13 |
|
wrdf |
|- ( E e. Word RR -> E : ( 0 ..^ ( # ` E ) ) --> RR ) |
14 |
12 13
|
syl |
|- ( ph -> E : ( 0 ..^ ( # ` E ) ) --> RR ) |
15 |
9
|
oveq1i |
|- ( N - 1 ) = ( ( # ` E ) - 1 ) |
16 |
|
eldifsn |
|- ( E e. ( Word RR \ { (/) } ) <-> ( E e. Word RR /\ E =/= (/) ) ) |
17 |
5 16
|
sylib |
|- ( ph -> ( E e. Word RR /\ E =/= (/) ) ) |
18 |
|
lennncl |
|- ( ( E e. Word RR /\ E =/= (/) ) -> ( # ` E ) e. NN ) |
19 |
|
fzo0end |
|- ( ( # ` E ) e. NN -> ( ( # ` E ) - 1 ) e. ( 0 ..^ ( # ` E ) ) ) |
20 |
17 18 19
|
3syl |
|- ( ph -> ( ( # ` E ) - 1 ) e. ( 0 ..^ ( # ` E ) ) ) |
21 |
15 20
|
eqeltrid |
|- ( ph -> ( N - 1 ) e. ( 0 ..^ ( # ` E ) ) ) |
22 |
14 21
|
ffvelrnd |
|- ( ph -> ( E ` ( N - 1 ) ) e. RR ) |
23 |
22
|
recnd |
|- ( ph -> ( E ` ( N - 1 ) ) e. CC ) |
24 |
10 23
|
eqeltrid |
|- ( ph -> B e. CC ) |
25 |
11 24
|
mulcomd |
|- ( ph -> ( A x. B ) = ( B x. A ) ) |
26 |
25
|
breq2d |
|- ( ph -> ( 0 < ( A x. B ) <-> 0 < ( B x. A ) ) ) |
27 |
10 22
|
eqeltrid |
|- ( ph -> B e. RR ) |
28 |
|
sgnmulsgp |
|- ( ( A e. RR /\ B e. RR ) -> ( 0 < ( A x. B ) <-> 0 < ( ( sgn ` A ) x. ( sgn ` B ) ) ) ) |
29 |
8 27 28
|
syl2anc |
|- ( ph -> ( 0 < ( A x. B ) <-> 0 < ( ( sgn ` A ) x. ( sgn ` B ) ) ) ) |
30 |
26 29
|
bitr3d |
|- ( ph -> ( 0 < ( B x. A ) <-> 0 < ( ( sgn ` A ) x. ( sgn ` B ) ) ) ) |
31 |
30
|
biimpa |
|- ( ( ph /\ 0 < ( B x. A ) ) -> 0 < ( ( sgn ` A ) x. ( sgn ` B ) ) ) |
32 |
5
|
adantr |
|- ( ( ph /\ 0 < ( B x. A ) ) -> E e. ( Word RR \ { (/) } ) ) |
33 |
24
|
adantr |
|- ( ( ph /\ 0 < ( B x. A ) ) -> B e. CC ) |
34 |
11
|
adantr |
|- ( ( ph /\ 0 < ( B x. A ) ) -> A e. CC ) |
35 |
|
simpr |
|- ( ( ph /\ 0 < ( B x. A ) ) -> 0 < ( B x. A ) ) |
36 |
35
|
gt0ne0d |
|- ( ( ph /\ 0 < ( B x. A ) ) -> ( B x. A ) =/= 0 ) |
37 |
33 34 36
|
mulne0bad |
|- ( ( ph /\ 0 < ( B x. A ) ) -> B =/= 0 ) |
38 |
10 37
|
eqnetrrid |
|- ( ( ph /\ 0 < ( B x. A ) ) -> ( E ` ( N - 1 ) ) =/= 0 ) |
39 |
1 2 3 4 9
|
signsvtn0 |
|- ( ( E e. ( Word RR \ { (/) } ) /\ ( E ` ( N - 1 ) ) =/= 0 ) -> ( ( T ` E ) ` ( N - 1 ) ) = ( sgn ` ( E ` ( N - 1 ) ) ) ) |
40 |
10
|
fveq2i |
|- ( sgn ` B ) = ( sgn ` ( E ` ( N - 1 ) ) ) |
41 |
39 40
|
eqtr4di |
|- ( ( E e. ( Word RR \ { (/) } ) /\ ( E ` ( N - 1 ) ) =/= 0 ) -> ( ( T ` E ) ` ( N - 1 ) ) = ( sgn ` B ) ) |
42 |
32 38 41
|
syl2anc |
|- ( ( ph /\ 0 < ( B x. A ) ) -> ( ( T ` E ) ` ( N - 1 ) ) = ( sgn ` B ) ) |
43 |
42
|
fveq2d |
|- ( ( ph /\ 0 < ( B x. A ) ) -> ( sgn ` ( ( T ` E ) ` ( N - 1 ) ) ) = ( sgn ` ( sgn ` B ) ) ) |
44 |
27
|
adantr |
|- ( ( ph /\ 0 < ( B x. A ) ) -> B e. RR ) |
45 |
44
|
rexrd |
|- ( ( ph /\ 0 < ( B x. A ) ) -> B e. RR* ) |
46 |
|
sgnsgn |
|- ( B e. RR* -> ( sgn ` ( sgn ` B ) ) = ( sgn ` B ) ) |
47 |
45 46
|
syl |
|- ( ( ph /\ 0 < ( B x. A ) ) -> ( sgn ` ( sgn ` B ) ) = ( sgn ` B ) ) |
48 |
43 47
|
eqtrd |
|- ( ( ph /\ 0 < ( B x. A ) ) -> ( sgn ` ( ( T ` E ) ` ( N - 1 ) ) ) = ( sgn ` B ) ) |
49 |
48
|
oveq2d |
|- ( ( ph /\ 0 < ( B x. A ) ) -> ( ( sgn ` A ) x. ( sgn ` ( ( T ` E ) ` ( N - 1 ) ) ) ) = ( ( sgn ` A ) x. ( sgn ` B ) ) ) |
50 |
31 49
|
breqtrrd |
|- ( ( ph /\ 0 < ( B x. A ) ) -> 0 < ( ( sgn ` A ) x. ( sgn ` ( ( T ` E ) ` ( N - 1 ) ) ) ) ) |
51 |
8
|
adantr |
|- ( ( ph /\ 0 < ( B x. A ) ) -> A e. RR ) |
52 |
|
sgnclre |
|- ( B e. RR -> ( sgn ` B ) e. RR ) |
53 |
44 52
|
syl |
|- ( ( ph /\ 0 < ( B x. A ) ) -> ( sgn ` B ) e. RR ) |
54 |
42 53
|
eqeltrd |
|- ( ( ph /\ 0 < ( B x. A ) ) -> ( ( T ` E ) ` ( N - 1 ) ) e. RR ) |
55 |
|
sgnmulsgp |
|- ( ( A e. RR /\ ( ( T ` E ) ` ( N - 1 ) ) e. RR ) -> ( 0 < ( A x. ( ( T ` E ) ` ( N - 1 ) ) ) <-> 0 < ( ( sgn ` A ) x. ( sgn ` ( ( T ` E ) ` ( N - 1 ) ) ) ) ) ) |
56 |
51 54 55
|
syl2anc |
|- ( ( ph /\ 0 < ( B x. A ) ) -> ( 0 < ( A x. ( ( T ` E ) ` ( N - 1 ) ) ) <-> 0 < ( ( sgn ` A ) x. ( sgn ` ( ( T ` E ) ` ( N - 1 ) ) ) ) ) ) |
57 |
50 56
|
mpbird |
|- ( ( ph /\ 0 < ( B x. A ) ) -> 0 < ( A x. ( ( T ` E ) ` ( N - 1 ) ) ) ) |
58 |
|
eqid |
|- ( ( T ` E ) ` ( N - 1 ) ) = ( ( T ` E ) ` ( N - 1 ) ) |
59 |
1 2 3 4 5 6 7 8 9 58
|
signsvtp |
|- ( ( ph /\ 0 < ( A x. ( ( T ` E ) ` ( N - 1 ) ) ) ) -> ( V ` F ) = ( V ` E ) ) |
60 |
57 59
|
syldan |
|- ( ( ph /\ 0 < ( B x. A ) ) -> ( V ` F ) = ( V ` E ) ) |