| Step | Hyp | Ref | Expression | 
						
							| 1 |  | signsv.p |  |-  .+^ = ( a e. { -u 1 , 0 , 1 } , b e. { -u 1 , 0 , 1 } |-> if ( b = 0 , a , b ) ) | 
						
							| 2 |  | signsv.w |  |-  W = { <. ( Base ` ndx ) , { -u 1 , 0 , 1 } >. , <. ( +g ` ndx ) , .+^ >. } | 
						
							| 3 |  | signsv.t |  |-  T = ( f e. Word RR |-> ( n e. ( 0 ..^ ( # ` f ) ) |-> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( f ` i ) ) ) ) ) ) | 
						
							| 4 |  | signsv.v |  |-  V = ( f e. Word RR |-> sum_ j e. ( 1 ..^ ( # ` f ) ) if ( ( ( T ` f ) ` j ) =/= ( ( T ` f ) ` ( j - 1 ) ) , 1 , 0 ) ) | 
						
							| 5 |  | signsvf.e |  |-  ( ph -> E e. ( Word RR \ { (/) } ) ) | 
						
							| 6 |  | signsvf.0 |  |-  ( ph -> ( E ` 0 ) =/= 0 ) | 
						
							| 7 |  | signsvf.f |  |-  ( ph -> F = ( E ++ <" A "> ) ) | 
						
							| 8 |  | signsvf.a |  |-  ( ph -> A e. RR ) | 
						
							| 9 |  | signsvf.n |  |-  N = ( # ` E ) | 
						
							| 10 |  | signsvf.b |  |-  B = ( E ` ( N - 1 ) ) | 
						
							| 11 | 8 | recnd |  |-  ( ph -> A e. CC ) | 
						
							| 12 | 5 | eldifad |  |-  ( ph -> E e. Word RR ) | 
						
							| 13 |  | wrdf |  |-  ( E e. Word RR -> E : ( 0 ..^ ( # ` E ) ) --> RR ) | 
						
							| 14 | 12 13 | syl |  |-  ( ph -> E : ( 0 ..^ ( # ` E ) ) --> RR ) | 
						
							| 15 | 9 | oveq1i |  |-  ( N - 1 ) = ( ( # ` E ) - 1 ) | 
						
							| 16 |  | eldifsn |  |-  ( E e. ( Word RR \ { (/) } ) <-> ( E e. Word RR /\ E =/= (/) ) ) | 
						
							| 17 | 5 16 | sylib |  |-  ( ph -> ( E e. Word RR /\ E =/= (/) ) ) | 
						
							| 18 |  | lennncl |  |-  ( ( E e. Word RR /\ E =/= (/) ) -> ( # ` E ) e. NN ) | 
						
							| 19 |  | fzo0end |  |-  ( ( # ` E ) e. NN -> ( ( # ` E ) - 1 ) e. ( 0 ..^ ( # ` E ) ) ) | 
						
							| 20 | 17 18 19 | 3syl |  |-  ( ph -> ( ( # ` E ) - 1 ) e. ( 0 ..^ ( # ` E ) ) ) | 
						
							| 21 | 15 20 | eqeltrid |  |-  ( ph -> ( N - 1 ) e. ( 0 ..^ ( # ` E ) ) ) | 
						
							| 22 | 14 21 | ffvelcdmd |  |-  ( ph -> ( E ` ( N - 1 ) ) e. RR ) | 
						
							| 23 | 22 | recnd |  |-  ( ph -> ( E ` ( N - 1 ) ) e. CC ) | 
						
							| 24 | 10 23 | eqeltrid |  |-  ( ph -> B e. CC ) | 
						
							| 25 | 11 24 | mulcomd |  |-  ( ph -> ( A x. B ) = ( B x. A ) ) | 
						
							| 26 | 25 | breq2d |  |-  ( ph -> ( 0 < ( A x. B ) <-> 0 < ( B x. A ) ) ) | 
						
							| 27 | 10 22 | eqeltrid |  |-  ( ph -> B e. RR ) | 
						
							| 28 |  | sgnmulsgp |  |-  ( ( A e. RR /\ B e. RR ) -> ( 0 < ( A x. B ) <-> 0 < ( ( sgn ` A ) x. ( sgn ` B ) ) ) ) | 
						
							| 29 | 8 27 28 | syl2anc |  |-  ( ph -> ( 0 < ( A x. B ) <-> 0 < ( ( sgn ` A ) x. ( sgn ` B ) ) ) ) | 
						
							| 30 | 26 29 | bitr3d |  |-  ( ph -> ( 0 < ( B x. A ) <-> 0 < ( ( sgn ` A ) x. ( sgn ` B ) ) ) ) | 
						
							| 31 | 30 | biimpa |  |-  ( ( ph /\ 0 < ( B x. A ) ) -> 0 < ( ( sgn ` A ) x. ( sgn ` B ) ) ) | 
						
							| 32 | 5 | adantr |  |-  ( ( ph /\ 0 < ( B x. A ) ) -> E e. ( Word RR \ { (/) } ) ) | 
						
							| 33 | 24 | adantr |  |-  ( ( ph /\ 0 < ( B x. A ) ) -> B e. CC ) | 
						
							| 34 | 11 | adantr |  |-  ( ( ph /\ 0 < ( B x. A ) ) -> A e. CC ) | 
						
							| 35 |  | simpr |  |-  ( ( ph /\ 0 < ( B x. A ) ) -> 0 < ( B x. A ) ) | 
						
							| 36 | 35 | gt0ne0d |  |-  ( ( ph /\ 0 < ( B x. A ) ) -> ( B x. A ) =/= 0 ) | 
						
							| 37 | 33 34 36 | mulne0bad |  |-  ( ( ph /\ 0 < ( B x. A ) ) -> B =/= 0 ) | 
						
							| 38 | 10 37 | eqnetrrid |  |-  ( ( ph /\ 0 < ( B x. A ) ) -> ( E ` ( N - 1 ) ) =/= 0 ) | 
						
							| 39 | 1 2 3 4 9 | signsvtn0 |  |-  ( ( E e. ( Word RR \ { (/) } ) /\ ( E ` ( N - 1 ) ) =/= 0 ) -> ( ( T ` E ) ` ( N - 1 ) ) = ( sgn ` ( E ` ( N - 1 ) ) ) ) | 
						
							| 40 | 10 | fveq2i |  |-  ( sgn ` B ) = ( sgn ` ( E ` ( N - 1 ) ) ) | 
						
							| 41 | 39 40 | eqtr4di |  |-  ( ( E e. ( Word RR \ { (/) } ) /\ ( E ` ( N - 1 ) ) =/= 0 ) -> ( ( T ` E ) ` ( N - 1 ) ) = ( sgn ` B ) ) | 
						
							| 42 | 32 38 41 | syl2anc |  |-  ( ( ph /\ 0 < ( B x. A ) ) -> ( ( T ` E ) ` ( N - 1 ) ) = ( sgn ` B ) ) | 
						
							| 43 | 42 | fveq2d |  |-  ( ( ph /\ 0 < ( B x. A ) ) -> ( sgn ` ( ( T ` E ) ` ( N - 1 ) ) ) = ( sgn ` ( sgn ` B ) ) ) | 
						
							| 44 | 27 | adantr |  |-  ( ( ph /\ 0 < ( B x. A ) ) -> B e. RR ) | 
						
							| 45 | 44 | rexrd |  |-  ( ( ph /\ 0 < ( B x. A ) ) -> B e. RR* ) | 
						
							| 46 |  | sgnsgn |  |-  ( B e. RR* -> ( sgn ` ( sgn ` B ) ) = ( sgn ` B ) ) | 
						
							| 47 | 45 46 | syl |  |-  ( ( ph /\ 0 < ( B x. A ) ) -> ( sgn ` ( sgn ` B ) ) = ( sgn ` B ) ) | 
						
							| 48 | 43 47 | eqtrd |  |-  ( ( ph /\ 0 < ( B x. A ) ) -> ( sgn ` ( ( T ` E ) ` ( N - 1 ) ) ) = ( sgn ` B ) ) | 
						
							| 49 | 48 | oveq2d |  |-  ( ( ph /\ 0 < ( B x. A ) ) -> ( ( sgn ` A ) x. ( sgn ` ( ( T ` E ) ` ( N - 1 ) ) ) ) = ( ( sgn ` A ) x. ( sgn ` B ) ) ) | 
						
							| 50 | 31 49 | breqtrrd |  |-  ( ( ph /\ 0 < ( B x. A ) ) -> 0 < ( ( sgn ` A ) x. ( sgn ` ( ( T ` E ) ` ( N - 1 ) ) ) ) ) | 
						
							| 51 | 8 | adantr |  |-  ( ( ph /\ 0 < ( B x. A ) ) -> A e. RR ) | 
						
							| 52 |  | sgnclre |  |-  ( B e. RR -> ( sgn ` B ) e. RR ) | 
						
							| 53 | 44 52 | syl |  |-  ( ( ph /\ 0 < ( B x. A ) ) -> ( sgn ` B ) e. RR ) | 
						
							| 54 | 42 53 | eqeltrd |  |-  ( ( ph /\ 0 < ( B x. A ) ) -> ( ( T ` E ) ` ( N - 1 ) ) e. RR ) | 
						
							| 55 |  | sgnmulsgp |  |-  ( ( A e. RR /\ ( ( T ` E ) ` ( N - 1 ) ) e. RR ) -> ( 0 < ( A x. ( ( T ` E ) ` ( N - 1 ) ) ) <-> 0 < ( ( sgn ` A ) x. ( sgn ` ( ( T ` E ) ` ( N - 1 ) ) ) ) ) ) | 
						
							| 56 | 51 54 55 | syl2anc |  |-  ( ( ph /\ 0 < ( B x. A ) ) -> ( 0 < ( A x. ( ( T ` E ) ` ( N - 1 ) ) ) <-> 0 < ( ( sgn ` A ) x. ( sgn ` ( ( T ` E ) ` ( N - 1 ) ) ) ) ) ) | 
						
							| 57 | 50 56 | mpbird |  |-  ( ( ph /\ 0 < ( B x. A ) ) -> 0 < ( A x. ( ( T ` E ) ` ( N - 1 ) ) ) ) | 
						
							| 58 |  | eqid |  |-  ( ( T ` E ) ` ( N - 1 ) ) = ( ( T ` E ) ` ( N - 1 ) ) | 
						
							| 59 | 1 2 3 4 5 6 7 8 9 58 | signsvtp |  |-  ( ( ph /\ 0 < ( A x. ( ( T ` E ) ` ( N - 1 ) ) ) ) -> ( V ` F ) = ( V ` E ) ) | 
						
							| 60 | 57 59 | syldan |  |-  ( ( ph /\ 0 < ( B x. A ) ) -> ( V ` F ) = ( V ` E ) ) |