| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tdeglem.a |
|- A = { m e. ( NN0 ^m I ) | ( `' m " NN ) e. Fin } |
| 2 |
|
tdeglem.h |
|- H = ( h e. A |-> ( CCfld gsum h ) ) |
| 3 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
| 4 |
|
cnfld0 |
|- 0 = ( 0g ` CCfld ) |
| 5 |
|
cnfldadd |
|- + = ( +g ` CCfld ) |
| 6 |
|
cnring |
|- CCfld e. Ring |
| 7 |
|
ringcmn |
|- ( CCfld e. Ring -> CCfld e. CMnd ) |
| 8 |
6 7
|
mp1i |
|- ( ( X e. A /\ Y e. A ) -> CCfld e. CMnd ) |
| 9 |
|
simpl |
|- ( ( X e. A /\ Y e. A ) -> X e. A ) |
| 10 |
1
|
psrbagf |
|- ( X e. A -> X : I --> NN0 ) |
| 11 |
|
nn0sscn |
|- NN0 C_ CC |
| 12 |
|
fss |
|- ( ( X : I --> NN0 /\ NN0 C_ CC ) -> X : I --> CC ) |
| 13 |
10 11 12
|
sylancl |
|- ( X e. A -> X : I --> CC ) |
| 14 |
13
|
adantr |
|- ( ( X e. A /\ Y e. A ) -> X : I --> CC ) |
| 15 |
14
|
ffnd |
|- ( ( X e. A /\ Y e. A ) -> X Fn I ) |
| 16 |
9 15
|
fndmexd |
|- ( ( X e. A /\ Y e. A ) -> I e. _V ) |
| 17 |
1
|
psrbagf |
|- ( Y e. A -> Y : I --> NN0 ) |
| 18 |
|
fss |
|- ( ( Y : I --> NN0 /\ NN0 C_ CC ) -> Y : I --> CC ) |
| 19 |
17 11 18
|
sylancl |
|- ( Y e. A -> Y : I --> CC ) |
| 20 |
19
|
adantl |
|- ( ( X e. A /\ Y e. A ) -> Y : I --> CC ) |
| 21 |
1
|
psrbagfsupp |
|- ( X e. A -> X finSupp 0 ) |
| 22 |
21
|
adantr |
|- ( ( X e. A /\ Y e. A ) -> X finSupp 0 ) |
| 23 |
1
|
psrbagfsupp |
|- ( Y e. A -> Y finSupp 0 ) |
| 24 |
23
|
adantl |
|- ( ( X e. A /\ Y e. A ) -> Y finSupp 0 ) |
| 25 |
3 4 5 8 16 14 20 22 24
|
gsumadd |
|- ( ( X e. A /\ Y e. A ) -> ( CCfld gsum ( X oF + Y ) ) = ( ( CCfld gsum X ) + ( CCfld gsum Y ) ) ) |
| 26 |
1
|
psrbagaddcl |
|- ( ( X e. A /\ Y e. A ) -> ( X oF + Y ) e. A ) |
| 27 |
|
oveq2 |
|- ( h = ( X oF + Y ) -> ( CCfld gsum h ) = ( CCfld gsum ( X oF + Y ) ) ) |
| 28 |
|
ovex |
|- ( CCfld gsum ( X oF + Y ) ) e. _V |
| 29 |
27 2 28
|
fvmpt |
|- ( ( X oF + Y ) e. A -> ( H ` ( X oF + Y ) ) = ( CCfld gsum ( X oF + Y ) ) ) |
| 30 |
26 29
|
syl |
|- ( ( X e. A /\ Y e. A ) -> ( H ` ( X oF + Y ) ) = ( CCfld gsum ( X oF + Y ) ) ) |
| 31 |
|
oveq2 |
|- ( h = X -> ( CCfld gsum h ) = ( CCfld gsum X ) ) |
| 32 |
|
ovex |
|- ( CCfld gsum X ) e. _V |
| 33 |
31 2 32
|
fvmpt |
|- ( X e. A -> ( H ` X ) = ( CCfld gsum X ) ) |
| 34 |
|
oveq2 |
|- ( h = Y -> ( CCfld gsum h ) = ( CCfld gsum Y ) ) |
| 35 |
|
ovex |
|- ( CCfld gsum Y ) e. _V |
| 36 |
34 2 35
|
fvmpt |
|- ( Y e. A -> ( H ` Y ) = ( CCfld gsum Y ) ) |
| 37 |
33 36
|
oveqan12d |
|- ( ( X e. A /\ Y e. A ) -> ( ( H ` X ) + ( H ` Y ) ) = ( ( CCfld gsum X ) + ( CCfld gsum Y ) ) ) |
| 38 |
25 30 37
|
3eqtr4d |
|- ( ( X e. A /\ Y e. A ) -> ( H ` ( X oF + Y ) ) = ( ( H ` X ) + ( H ` Y ) ) ) |