Metamath Proof Explorer


Theorem tdeglem3

Description: Additivity of the total degree helper function. (Contributed by Stefan O'Rear, 26-Mar-2015) (Proof shortened by AV, 27-Jul-2019) Remove a sethood antecedent. (Revised by SN, 7-Aug-2024)

Ref Expression
Hypotheses tdeglem.a A=m0I|m-1Fin
tdeglem.h H=hAfldh
Assertion tdeglem3 XAYAHX+fY=HX+HY

Proof

Step Hyp Ref Expression
1 tdeglem.a A=m0I|m-1Fin
2 tdeglem.h H=hAfldh
3 cnfldbas =Basefld
4 cnfld0 0=0fld
5 cnfldadd +=+fld
6 cnring fldRing
7 ringcmn fldRingfldCMnd
8 6 7 mp1i XAYAfldCMnd
9 simpl XAYAXA
10 1 psrbagf XAX:I0
11 nn0sscn 0
12 fss X:I00X:I
13 10 11 12 sylancl XAX:I
14 13 adantr XAYAX:I
15 14 ffnd XAYAXFnI
16 9 15 fndmexd XAYAIV
17 1 psrbagf YAY:I0
18 fss Y:I00Y:I
19 17 11 18 sylancl YAY:I
20 19 adantl XAYAY:I
21 1 psrbagfsupp XAfinSupp0X
22 21 adantr XAYAfinSupp0X
23 1 psrbagfsupp YAfinSupp0Y
24 23 adantl XAYAfinSupp0Y
25 3 4 5 8 16 14 20 22 24 gsumadd XAYAfldX+fY=fldX+fldY
26 1 psrbagaddcl XAYAX+fYA
27 oveq2 h=X+fYfldh=fldX+fY
28 ovex fldX+fYV
29 27 2 28 fvmpt X+fYAHX+fY=fldX+fY
30 26 29 syl XAYAHX+fY=fldX+fY
31 oveq2 h=Xfldh=fldX
32 ovex fldXV
33 31 2 32 fvmpt XAHX=fldX
34 oveq2 h=Yfldh=fldY
35 ovex fldYV
36 34 2 35 fvmpt YAHY=fldY
37 33 36 oveqan12d XAYAHX+HY=fldX+fldY
38 25 30 37 3eqtr4d XAYAHX+fY=HX+HY