Metamath Proof Explorer


Theorem tdeglem3OLD

Description: Obsolete version of tdeglem3 as of 7-Aug-2024. (Contributed by Stefan O'Rear, 26-Mar-2015) (Proof shortened by AV, 27-Jul-2019) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses tdeglem.a A=m0I|m-1Fin
tdeglem.h H=hAfldh
Assertion tdeglem3OLD IVXAYAHX+fY=HX+HY

Proof

Step Hyp Ref Expression
1 tdeglem.a A=m0I|m-1Fin
2 tdeglem.h H=hAfldh
3 cnfldbas =Basefld
4 cnfld0 0=0fld
5 cnfldadd +=+fld
6 cnring fldRing
7 ringcmn fldRingfldCMnd
8 6 7 mp1i IVXAYAfldCMnd
9 simp1 IVXAYAIV
10 1 psrbagfOLD IVXAX:I0
11 nn0sscn 0
12 fss X:I00X:I
13 10 11 12 sylancl IVXAX:I
14 13 3adant3 IVXAYAX:I
15 1 psrbagfOLD IVYAY:I0
16 fss Y:I00Y:I
17 15 11 16 sylancl IVYAY:I
18 17 3adant2 IVXAYAY:I
19 1 psrbagfsuppOLD XAIVfinSupp0X
20 19 ancoms IVXAfinSupp0X
21 20 3adant3 IVXAYAfinSupp0X
22 1 psrbagfsuppOLD YAIVfinSupp0Y
23 22 ancoms IVYAfinSupp0Y
24 23 3adant2 IVXAYAfinSupp0Y
25 3 4 5 8 9 14 18 21 24 gsumadd IVXAYAfldX+fY=fldX+fldY
26 1 psrbagaddclOLD IVXAYAX+fYA
27 oveq2 h=X+fYfldh=fldX+fY
28 ovex fldX+fYV
29 27 2 28 fvmpt X+fYAHX+fY=fldX+fY
30 26 29 syl IVXAYAHX+fY=fldX+fY
31 oveq2 h=Xfldh=fldX
32 ovex fldXV
33 31 2 32 fvmpt XAHX=fldX
34 oveq2 h=Yfldh=fldY
35 ovex fldYV
36 34 2 35 fvmpt YAHY=fldY
37 33 36 oveqan12d XAYAHX+HY=fldX+fldY
38 37 3adant1 IVXAYAHX+HY=fldX+fldY
39 25 30 38 3eqtr4d IVXAYAHX+fY=HX+HY