Step |
Hyp |
Ref |
Expression |
1 |
|
tdeglem.a |
|
2 |
|
tdeglem.h |
|
3 |
|
rexnal |
|
4 |
|
df-ne |
|
5 |
|
oveq2 |
|
6 |
|
ovex |
|
7 |
5 2 6
|
fvmpt |
|
8 |
7
|
adantr |
|
9 |
1
|
psrbagf |
|
10 |
9
|
feqmptd |
|
11 |
10
|
adantr |
|
12 |
11
|
oveq2d |
|
13 |
|
cnfldbas |
|
14 |
|
cnfld0 |
|
15 |
|
cnfldadd |
|
16 |
|
cnring |
|
17 |
|
ringcmn |
|
18 |
16 17
|
mp1i |
|
19 |
|
id |
|
20 |
9
|
ffnd |
|
21 |
19 20
|
fndmexd |
|
22 |
21
|
adantr |
|
23 |
9
|
ffvelrnda |
|
24 |
23
|
nn0cnd |
|
25 |
24
|
adantlr |
|
26 |
1
|
psrbagfsupp |
|
27 |
10 26
|
eqbrtrrd |
|
28 |
27
|
adantr |
|
29 |
|
disjdifr |
|
30 |
29
|
a1i |
|
31 |
|
difsnid |
|
32 |
31
|
eqcomd |
|
33 |
32
|
ad2antrl |
|
34 |
13 14 15 18 22 25 28 30 33
|
gsumsplit2 |
|
35 |
8 12 34
|
3eqtrd |
|
36 |
22
|
difexd |
|
37 |
|
nn0subm |
|
38 |
37
|
a1i |
|
39 |
9
|
adantr |
|
40 |
|
eldifi |
|
41 |
|
ffvelrn |
|
42 |
39 40 41
|
syl2an |
|
43 |
42
|
fmpttd |
|
44 |
36
|
mptexd |
|
45 |
|
funmpt |
|
46 |
45
|
a1i |
|
47 |
|
funmpt |
|
48 |
|
difss |
|
49 |
|
mptss |
|
50 |
48 49
|
ax-mp |
|
51 |
22
|
mptexd |
|
52 |
|
funsssuppss |
|
53 |
47 50 51 52
|
mp3an12i |
|
54 |
|
fsuppsssupp |
|
55 |
44 46 28 53 54
|
syl22anc |
|
56 |
14 18 36 38 43 55
|
gsumsubmcl |
|
57 |
|
ringmnd |
|
58 |
16 57
|
ax-mp |
|
59 |
|
simprl |
|
60 |
39 59
|
ffvelrnd |
|
61 |
60
|
nn0cnd |
|
62 |
|
fveq2 |
|
63 |
13 62
|
gsumsn |
|
64 |
58 59 61 63
|
mp3an2i |
|
65 |
|
elnn0 |
|
66 |
60 65
|
sylib |
|
67 |
|
neneq |
|
68 |
67
|
ad2antll |
|
69 |
66 68
|
olcnd |
|
70 |
64 69
|
eqeltrd |
|
71 |
|
nn0nnaddcl |
|
72 |
56 70 71
|
syl2anc |
|
73 |
72
|
nnne0d |
|
74 |
35 73
|
eqnetrd |
|
75 |
74
|
expr |
|
76 |
4 75
|
syl5bir |
|
77 |
76
|
rexlimdva |
|
78 |
3 77
|
syl5bir |
|
79 |
78
|
necon4bd |
|
80 |
|
c0ex |
|
81 |
|
fnconstg |
|
82 |
80 81
|
mp1i |
|
83 |
|
eqfnfv |
|
84 |
20 82 83
|
syl2anc |
|
85 |
80
|
fvconst2 |
|
86 |
85
|
eqeq2d |
|
87 |
86
|
ralbiia |
|
88 |
84 87
|
bitrdi |
|
89 |
79 88
|
sylibrd |
|
90 |
1
|
psrbag0 |
|
91 |
|
oveq2 |
|
92 |
|
ovex |
|
93 |
91 2 92
|
fvmpt |
|
94 |
21 90 93
|
3syl |
|
95 |
|
fconstmpt |
|
96 |
95
|
oveq2i |
|
97 |
14
|
gsumz |
|
98 |
58 21 97
|
sylancr |
|
99 |
96 98
|
eqtrid |
|
100 |
94 99
|
eqtrd |
|
101 |
|
fveqeq2 |
|
102 |
100 101
|
syl5ibrcom |
|
103 |
89 102
|
impbid |
|