Step |
Hyp |
Ref |
Expression |
1 |
|
tdeglem.a |
|- A = { m e. ( NN0 ^m I ) | ( `' m " NN ) e. Fin } |
2 |
|
tdeglem.h |
|- H = ( h e. A |-> ( CCfld gsum h ) ) |
3 |
|
rexnal |
|- ( E. x e. I -. ( X ` x ) = 0 <-> -. A. x e. I ( X ` x ) = 0 ) |
4 |
|
df-ne |
|- ( ( X ` x ) =/= 0 <-> -. ( X ` x ) = 0 ) |
5 |
|
oveq2 |
|- ( h = X -> ( CCfld gsum h ) = ( CCfld gsum X ) ) |
6 |
|
ovex |
|- ( CCfld gsum X ) e. _V |
7 |
5 2 6
|
fvmpt |
|- ( X e. A -> ( H ` X ) = ( CCfld gsum X ) ) |
8 |
7
|
adantr |
|- ( ( X e. A /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) -> ( H ` X ) = ( CCfld gsum X ) ) |
9 |
1
|
psrbagf |
|- ( X e. A -> X : I --> NN0 ) |
10 |
9
|
feqmptd |
|- ( X e. A -> X = ( y e. I |-> ( X ` y ) ) ) |
11 |
10
|
adantr |
|- ( ( X e. A /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) -> X = ( y e. I |-> ( X ` y ) ) ) |
12 |
11
|
oveq2d |
|- ( ( X e. A /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) -> ( CCfld gsum X ) = ( CCfld gsum ( y e. I |-> ( X ` y ) ) ) ) |
13 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
14 |
|
cnfld0 |
|- 0 = ( 0g ` CCfld ) |
15 |
|
cnfldadd |
|- + = ( +g ` CCfld ) |
16 |
|
cnring |
|- CCfld e. Ring |
17 |
|
ringcmn |
|- ( CCfld e. Ring -> CCfld e. CMnd ) |
18 |
16 17
|
mp1i |
|- ( ( X e. A /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) -> CCfld e. CMnd ) |
19 |
|
id |
|- ( X e. A -> X e. A ) |
20 |
9
|
ffnd |
|- ( X e. A -> X Fn I ) |
21 |
19 20
|
fndmexd |
|- ( X e. A -> I e. _V ) |
22 |
21
|
adantr |
|- ( ( X e. A /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) -> I e. _V ) |
23 |
9
|
ffvelrnda |
|- ( ( X e. A /\ y e. I ) -> ( X ` y ) e. NN0 ) |
24 |
23
|
nn0cnd |
|- ( ( X e. A /\ y e. I ) -> ( X ` y ) e. CC ) |
25 |
24
|
adantlr |
|- ( ( ( X e. A /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) /\ y e. I ) -> ( X ` y ) e. CC ) |
26 |
1
|
psrbagfsupp |
|- ( X e. A -> X finSupp 0 ) |
27 |
10 26
|
eqbrtrrd |
|- ( X e. A -> ( y e. I |-> ( X ` y ) ) finSupp 0 ) |
28 |
27
|
adantr |
|- ( ( X e. A /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) -> ( y e. I |-> ( X ` y ) ) finSupp 0 ) |
29 |
|
disjdifr |
|- ( ( I \ { x } ) i^i { x } ) = (/) |
30 |
29
|
a1i |
|- ( ( X e. A /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) -> ( ( I \ { x } ) i^i { x } ) = (/) ) |
31 |
|
difsnid |
|- ( x e. I -> ( ( I \ { x } ) u. { x } ) = I ) |
32 |
31
|
eqcomd |
|- ( x e. I -> I = ( ( I \ { x } ) u. { x } ) ) |
33 |
32
|
ad2antrl |
|- ( ( X e. A /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) -> I = ( ( I \ { x } ) u. { x } ) ) |
34 |
13 14 15 18 22 25 28 30 33
|
gsumsplit2 |
|- ( ( X e. A /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) -> ( CCfld gsum ( y e. I |-> ( X ` y ) ) ) = ( ( CCfld gsum ( y e. ( I \ { x } ) |-> ( X ` y ) ) ) + ( CCfld gsum ( y e. { x } |-> ( X ` y ) ) ) ) ) |
35 |
8 12 34
|
3eqtrd |
|- ( ( X e. A /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) -> ( H ` X ) = ( ( CCfld gsum ( y e. ( I \ { x } ) |-> ( X ` y ) ) ) + ( CCfld gsum ( y e. { x } |-> ( X ` y ) ) ) ) ) |
36 |
22
|
difexd |
|- ( ( X e. A /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) -> ( I \ { x } ) e. _V ) |
37 |
|
nn0subm |
|- NN0 e. ( SubMnd ` CCfld ) |
38 |
37
|
a1i |
|- ( ( X e. A /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) -> NN0 e. ( SubMnd ` CCfld ) ) |
39 |
9
|
adantr |
|- ( ( X e. A /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) -> X : I --> NN0 ) |
40 |
|
eldifi |
|- ( y e. ( I \ { x } ) -> y e. I ) |
41 |
|
ffvelrn |
|- ( ( X : I --> NN0 /\ y e. I ) -> ( X ` y ) e. NN0 ) |
42 |
39 40 41
|
syl2an |
|- ( ( ( X e. A /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) /\ y e. ( I \ { x } ) ) -> ( X ` y ) e. NN0 ) |
43 |
42
|
fmpttd |
|- ( ( X e. A /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) -> ( y e. ( I \ { x } ) |-> ( X ` y ) ) : ( I \ { x } ) --> NN0 ) |
44 |
36
|
mptexd |
|- ( ( X e. A /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) -> ( y e. ( I \ { x } ) |-> ( X ` y ) ) e. _V ) |
45 |
|
funmpt |
|- Fun ( y e. ( I \ { x } ) |-> ( X ` y ) ) |
46 |
45
|
a1i |
|- ( ( X e. A /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) -> Fun ( y e. ( I \ { x } ) |-> ( X ` y ) ) ) |
47 |
|
funmpt |
|- Fun ( y e. I |-> ( X ` y ) ) |
48 |
|
difss |
|- ( I \ { x } ) C_ I |
49 |
|
mptss |
|- ( ( I \ { x } ) C_ I -> ( y e. ( I \ { x } ) |-> ( X ` y ) ) C_ ( y e. I |-> ( X ` y ) ) ) |
50 |
48 49
|
ax-mp |
|- ( y e. ( I \ { x } ) |-> ( X ` y ) ) C_ ( y e. I |-> ( X ` y ) ) |
51 |
22
|
mptexd |
|- ( ( X e. A /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) -> ( y e. I |-> ( X ` y ) ) e. _V ) |
52 |
|
funsssuppss |
|- ( ( Fun ( y e. I |-> ( X ` y ) ) /\ ( y e. ( I \ { x } ) |-> ( X ` y ) ) C_ ( y e. I |-> ( X ` y ) ) /\ ( y e. I |-> ( X ` y ) ) e. _V ) -> ( ( y e. ( I \ { x } ) |-> ( X ` y ) ) supp 0 ) C_ ( ( y e. I |-> ( X ` y ) ) supp 0 ) ) |
53 |
47 50 51 52
|
mp3an12i |
|- ( ( X e. A /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) -> ( ( y e. ( I \ { x } ) |-> ( X ` y ) ) supp 0 ) C_ ( ( y e. I |-> ( X ` y ) ) supp 0 ) ) |
54 |
|
fsuppsssupp |
|- ( ( ( ( y e. ( I \ { x } ) |-> ( X ` y ) ) e. _V /\ Fun ( y e. ( I \ { x } ) |-> ( X ` y ) ) ) /\ ( ( y e. I |-> ( X ` y ) ) finSupp 0 /\ ( ( y e. ( I \ { x } ) |-> ( X ` y ) ) supp 0 ) C_ ( ( y e. I |-> ( X ` y ) ) supp 0 ) ) ) -> ( y e. ( I \ { x } ) |-> ( X ` y ) ) finSupp 0 ) |
55 |
44 46 28 53 54
|
syl22anc |
|- ( ( X e. A /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) -> ( y e. ( I \ { x } ) |-> ( X ` y ) ) finSupp 0 ) |
56 |
14 18 36 38 43 55
|
gsumsubmcl |
|- ( ( X e. A /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) -> ( CCfld gsum ( y e. ( I \ { x } ) |-> ( X ` y ) ) ) e. NN0 ) |
57 |
|
ringmnd |
|- ( CCfld e. Ring -> CCfld e. Mnd ) |
58 |
16 57
|
ax-mp |
|- CCfld e. Mnd |
59 |
|
simprl |
|- ( ( X e. A /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) -> x e. I ) |
60 |
39 59
|
ffvelrnd |
|- ( ( X e. A /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) -> ( X ` x ) e. NN0 ) |
61 |
60
|
nn0cnd |
|- ( ( X e. A /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) -> ( X ` x ) e. CC ) |
62 |
|
fveq2 |
|- ( y = x -> ( X ` y ) = ( X ` x ) ) |
63 |
13 62
|
gsumsn |
|- ( ( CCfld e. Mnd /\ x e. I /\ ( X ` x ) e. CC ) -> ( CCfld gsum ( y e. { x } |-> ( X ` y ) ) ) = ( X ` x ) ) |
64 |
58 59 61 63
|
mp3an2i |
|- ( ( X e. A /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) -> ( CCfld gsum ( y e. { x } |-> ( X ` y ) ) ) = ( X ` x ) ) |
65 |
|
elnn0 |
|- ( ( X ` x ) e. NN0 <-> ( ( X ` x ) e. NN \/ ( X ` x ) = 0 ) ) |
66 |
60 65
|
sylib |
|- ( ( X e. A /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) -> ( ( X ` x ) e. NN \/ ( X ` x ) = 0 ) ) |
67 |
|
neneq |
|- ( ( X ` x ) =/= 0 -> -. ( X ` x ) = 0 ) |
68 |
67
|
ad2antll |
|- ( ( X e. A /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) -> -. ( X ` x ) = 0 ) |
69 |
66 68
|
olcnd |
|- ( ( X e. A /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) -> ( X ` x ) e. NN ) |
70 |
64 69
|
eqeltrd |
|- ( ( X e. A /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) -> ( CCfld gsum ( y e. { x } |-> ( X ` y ) ) ) e. NN ) |
71 |
|
nn0nnaddcl |
|- ( ( ( CCfld gsum ( y e. ( I \ { x } ) |-> ( X ` y ) ) ) e. NN0 /\ ( CCfld gsum ( y e. { x } |-> ( X ` y ) ) ) e. NN ) -> ( ( CCfld gsum ( y e. ( I \ { x } ) |-> ( X ` y ) ) ) + ( CCfld gsum ( y e. { x } |-> ( X ` y ) ) ) ) e. NN ) |
72 |
56 70 71
|
syl2anc |
|- ( ( X e. A /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) -> ( ( CCfld gsum ( y e. ( I \ { x } ) |-> ( X ` y ) ) ) + ( CCfld gsum ( y e. { x } |-> ( X ` y ) ) ) ) e. NN ) |
73 |
72
|
nnne0d |
|- ( ( X e. A /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) -> ( ( CCfld gsum ( y e. ( I \ { x } ) |-> ( X ` y ) ) ) + ( CCfld gsum ( y e. { x } |-> ( X ` y ) ) ) ) =/= 0 ) |
74 |
35 73
|
eqnetrd |
|- ( ( X e. A /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) -> ( H ` X ) =/= 0 ) |
75 |
74
|
expr |
|- ( ( X e. A /\ x e. I ) -> ( ( X ` x ) =/= 0 -> ( H ` X ) =/= 0 ) ) |
76 |
4 75
|
syl5bir |
|- ( ( X e. A /\ x e. I ) -> ( -. ( X ` x ) = 0 -> ( H ` X ) =/= 0 ) ) |
77 |
76
|
rexlimdva |
|- ( X e. A -> ( E. x e. I -. ( X ` x ) = 0 -> ( H ` X ) =/= 0 ) ) |
78 |
3 77
|
syl5bir |
|- ( X e. A -> ( -. A. x e. I ( X ` x ) = 0 -> ( H ` X ) =/= 0 ) ) |
79 |
78
|
necon4bd |
|- ( X e. A -> ( ( H ` X ) = 0 -> A. x e. I ( X ` x ) = 0 ) ) |
80 |
|
c0ex |
|- 0 e. _V |
81 |
|
fnconstg |
|- ( 0 e. _V -> ( I X. { 0 } ) Fn I ) |
82 |
80 81
|
mp1i |
|- ( X e. A -> ( I X. { 0 } ) Fn I ) |
83 |
|
eqfnfv |
|- ( ( X Fn I /\ ( I X. { 0 } ) Fn I ) -> ( X = ( I X. { 0 } ) <-> A. x e. I ( X ` x ) = ( ( I X. { 0 } ) ` x ) ) ) |
84 |
20 82 83
|
syl2anc |
|- ( X e. A -> ( X = ( I X. { 0 } ) <-> A. x e. I ( X ` x ) = ( ( I X. { 0 } ) ` x ) ) ) |
85 |
80
|
fvconst2 |
|- ( x e. I -> ( ( I X. { 0 } ) ` x ) = 0 ) |
86 |
85
|
eqeq2d |
|- ( x e. I -> ( ( X ` x ) = ( ( I X. { 0 } ) ` x ) <-> ( X ` x ) = 0 ) ) |
87 |
86
|
ralbiia |
|- ( A. x e. I ( X ` x ) = ( ( I X. { 0 } ) ` x ) <-> A. x e. I ( X ` x ) = 0 ) |
88 |
84 87
|
bitrdi |
|- ( X e. A -> ( X = ( I X. { 0 } ) <-> A. x e. I ( X ` x ) = 0 ) ) |
89 |
79 88
|
sylibrd |
|- ( X e. A -> ( ( H ` X ) = 0 -> X = ( I X. { 0 } ) ) ) |
90 |
1
|
psrbag0 |
|- ( I e. _V -> ( I X. { 0 } ) e. A ) |
91 |
|
oveq2 |
|- ( h = ( I X. { 0 } ) -> ( CCfld gsum h ) = ( CCfld gsum ( I X. { 0 } ) ) ) |
92 |
|
ovex |
|- ( CCfld gsum ( I X. { 0 } ) ) e. _V |
93 |
91 2 92
|
fvmpt |
|- ( ( I X. { 0 } ) e. A -> ( H ` ( I X. { 0 } ) ) = ( CCfld gsum ( I X. { 0 } ) ) ) |
94 |
21 90 93
|
3syl |
|- ( X e. A -> ( H ` ( I X. { 0 } ) ) = ( CCfld gsum ( I X. { 0 } ) ) ) |
95 |
|
fconstmpt |
|- ( I X. { 0 } ) = ( x e. I |-> 0 ) |
96 |
95
|
oveq2i |
|- ( CCfld gsum ( I X. { 0 } ) ) = ( CCfld gsum ( x e. I |-> 0 ) ) |
97 |
14
|
gsumz |
|- ( ( CCfld e. Mnd /\ I e. _V ) -> ( CCfld gsum ( x e. I |-> 0 ) ) = 0 ) |
98 |
58 21 97
|
sylancr |
|- ( X e. A -> ( CCfld gsum ( x e. I |-> 0 ) ) = 0 ) |
99 |
96 98
|
eqtrid |
|- ( X e. A -> ( CCfld gsum ( I X. { 0 } ) ) = 0 ) |
100 |
94 99
|
eqtrd |
|- ( X e. A -> ( H ` ( I X. { 0 } ) ) = 0 ) |
101 |
|
fveqeq2 |
|- ( X = ( I X. { 0 } ) -> ( ( H ` X ) = 0 <-> ( H ` ( I X. { 0 } ) ) = 0 ) ) |
102 |
100 101
|
syl5ibrcom |
|- ( X e. A -> ( X = ( I X. { 0 } ) -> ( H ` X ) = 0 ) ) |
103 |
89 102
|
impbid |
|- ( X e. A -> ( ( H ` X ) = 0 <-> X = ( I X. { 0 } ) ) ) |