Metamath Proof Explorer


Theorem psrbagaddclOLD

Description: Obsolete version of psrbagaddcl as of 7-Aug-2024. (Contributed by Mario Carneiro, 9-Jan-2015) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypothesis psrbag.d D=f0I|f-1Fin
Assertion psrbagaddclOLD IVFDGDF+fGD

Proof

Step Hyp Ref Expression
1 psrbag.d D=f0I|f-1Fin
2 nn0addcl x0y0x+y0
3 2 adantl IVFDGDx0y0x+y0
4 simp2 IVFDGDFD
5 1 psrbag IVFDF:I0F-1Fin
6 5 3ad2ant1 IVFDGDFDF:I0F-1Fin
7 4 6 mpbid IVFDGDF:I0F-1Fin
8 7 simpld IVFDGDF:I0
9 simp3 IVFDGDGD
10 1 psrbag IVGDG:I0G-1Fin
11 10 3ad2ant1 IVFDGDGDG:I0G-1Fin
12 9 11 mpbid IVFDGDG:I0G-1Fin
13 12 simpld IVFDGDG:I0
14 simp1 IVFDGDIV
15 inidm II=I
16 3 8 13 14 14 15 off IVFDGDF+fG:I0
17 fcdmnn0supp IVF+fG:I0F+fGsupp0=F+fG-1
18 14 16 17 syl2anc IVFDGDF+fGsupp0=F+fG-1
19 fvexd IVFDGDxIFxV
20 fvexd IVFDGDxIGxV
21 8 feqmptd IVFDGDF=xIFx
22 13 feqmptd IVFDGDG=xIGx
23 14 19 20 21 22 offval2 IVFDGDF+fG=xIFx+Gx
24 23 oveq1d IVFDGDF+fGsupp0=xIFx+Gxsupp0
25 18 24 eqtr3d IVFDGDF+fG-1=xIFx+Gxsupp0
26 fcdmnn0supp IVF:I0Fsupp0=F-1
27 14 8 26 syl2anc IVFDGDFsupp0=F-1
28 7 simprd IVFDGDF-1Fin
29 27 28 eqeltrd IVFDGDFsupp0Fin
30 fcdmnn0supp IVG:I0Gsupp0=G-1
31 14 13 30 syl2anc IVFDGDGsupp0=G-1
32 12 simprd IVFDGDG-1Fin
33 31 32 eqeltrd IVFDGDGsupp0Fin
34 unfi Fsupp0FinGsupp0Finsupp0Fsupp0GFin
35 29 33 34 syl2anc IVFDGDsupp0Fsupp0GFin
36 ssun1 Fsupp0supp0Fsupp0G
37 36 a1i IVFDGDFsupp0supp0Fsupp0G
38 c0ex 0V
39 38 a1i IVFDGD0V
40 8 37 14 39 suppssr IVFDGDxIsupp0Fsupp0GFx=0
41 ssun2 Gsupp0supp0Fsupp0G
42 41 a1i IVFDGDGsupp0supp0Fsupp0G
43 13 42 14 39 suppssr IVFDGDxIsupp0Fsupp0GGx=0
44 40 43 oveq12d IVFDGDxIsupp0Fsupp0GFx+Gx=0+0
45 00id 0+0=0
46 44 45 eqtrdi IVFDGDxIsupp0Fsupp0GFx+Gx=0
47 46 14 suppss2 IVFDGDxIFx+Gxsupp0supp0Fsupp0G
48 35 47 ssfid IVFDGDxIFx+Gxsupp0Fin
49 25 48 eqeltrd IVFDGDF+fG-1Fin
50 1 psrbag IVF+fGDF+fG:I0F+fG-1Fin
51 50 3ad2ant1 IVFDGDF+fGDF+fG:I0F+fG-1Fin
52 16 49 51 mpbir2and IVFDGDF+fGD