| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tdeglem.a |
⊢ 𝐴 = { 𝑚 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑚 “ ℕ ) ∈ Fin } |
| 2 |
|
tdeglem.h |
⊢ 𝐻 = ( ℎ ∈ 𝐴 ↦ ( ℂfld Σg ℎ ) ) |
| 3 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
| 4 |
|
cnfld0 |
⊢ 0 = ( 0g ‘ ℂfld ) |
| 5 |
|
cnfldadd |
⊢ + = ( +g ‘ ℂfld ) |
| 6 |
|
cnring |
⊢ ℂfld ∈ Ring |
| 7 |
|
ringcmn |
⊢ ( ℂfld ∈ Ring → ℂfld ∈ CMnd ) |
| 8 |
6 7
|
mp1i |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → ℂfld ∈ CMnd ) |
| 9 |
|
simpl |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → 𝑋 ∈ 𝐴 ) |
| 10 |
1
|
psrbagf |
⊢ ( 𝑋 ∈ 𝐴 → 𝑋 : 𝐼 ⟶ ℕ0 ) |
| 11 |
|
nn0sscn |
⊢ ℕ0 ⊆ ℂ |
| 12 |
|
fss |
⊢ ( ( 𝑋 : 𝐼 ⟶ ℕ0 ∧ ℕ0 ⊆ ℂ ) → 𝑋 : 𝐼 ⟶ ℂ ) |
| 13 |
10 11 12
|
sylancl |
⊢ ( 𝑋 ∈ 𝐴 → 𝑋 : 𝐼 ⟶ ℂ ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → 𝑋 : 𝐼 ⟶ ℂ ) |
| 15 |
14
|
ffnd |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → 𝑋 Fn 𝐼 ) |
| 16 |
9 15
|
fndmexd |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → 𝐼 ∈ V ) |
| 17 |
1
|
psrbagf |
⊢ ( 𝑌 ∈ 𝐴 → 𝑌 : 𝐼 ⟶ ℕ0 ) |
| 18 |
|
fss |
⊢ ( ( 𝑌 : 𝐼 ⟶ ℕ0 ∧ ℕ0 ⊆ ℂ ) → 𝑌 : 𝐼 ⟶ ℂ ) |
| 19 |
17 11 18
|
sylancl |
⊢ ( 𝑌 ∈ 𝐴 → 𝑌 : 𝐼 ⟶ ℂ ) |
| 20 |
19
|
adantl |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → 𝑌 : 𝐼 ⟶ ℂ ) |
| 21 |
1
|
psrbagfsupp |
⊢ ( 𝑋 ∈ 𝐴 → 𝑋 finSupp 0 ) |
| 22 |
21
|
adantr |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → 𝑋 finSupp 0 ) |
| 23 |
1
|
psrbagfsupp |
⊢ ( 𝑌 ∈ 𝐴 → 𝑌 finSupp 0 ) |
| 24 |
23
|
adantl |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → 𝑌 finSupp 0 ) |
| 25 |
3 4 5 8 16 14 20 22 24
|
gsumadd |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → ( ℂfld Σg ( 𝑋 ∘f + 𝑌 ) ) = ( ( ℂfld Σg 𝑋 ) + ( ℂfld Σg 𝑌 ) ) ) |
| 26 |
1
|
psrbagaddcl |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → ( 𝑋 ∘f + 𝑌 ) ∈ 𝐴 ) |
| 27 |
|
oveq2 |
⊢ ( ℎ = ( 𝑋 ∘f + 𝑌 ) → ( ℂfld Σg ℎ ) = ( ℂfld Σg ( 𝑋 ∘f + 𝑌 ) ) ) |
| 28 |
|
ovex |
⊢ ( ℂfld Σg ( 𝑋 ∘f + 𝑌 ) ) ∈ V |
| 29 |
27 2 28
|
fvmpt |
⊢ ( ( 𝑋 ∘f + 𝑌 ) ∈ 𝐴 → ( 𝐻 ‘ ( 𝑋 ∘f + 𝑌 ) ) = ( ℂfld Σg ( 𝑋 ∘f + 𝑌 ) ) ) |
| 30 |
26 29
|
syl |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → ( 𝐻 ‘ ( 𝑋 ∘f + 𝑌 ) ) = ( ℂfld Σg ( 𝑋 ∘f + 𝑌 ) ) ) |
| 31 |
|
oveq2 |
⊢ ( ℎ = 𝑋 → ( ℂfld Σg ℎ ) = ( ℂfld Σg 𝑋 ) ) |
| 32 |
|
ovex |
⊢ ( ℂfld Σg 𝑋 ) ∈ V |
| 33 |
31 2 32
|
fvmpt |
⊢ ( 𝑋 ∈ 𝐴 → ( 𝐻 ‘ 𝑋 ) = ( ℂfld Σg 𝑋 ) ) |
| 34 |
|
oveq2 |
⊢ ( ℎ = 𝑌 → ( ℂfld Σg ℎ ) = ( ℂfld Σg 𝑌 ) ) |
| 35 |
|
ovex |
⊢ ( ℂfld Σg 𝑌 ) ∈ V |
| 36 |
34 2 35
|
fvmpt |
⊢ ( 𝑌 ∈ 𝐴 → ( 𝐻 ‘ 𝑌 ) = ( ℂfld Σg 𝑌 ) ) |
| 37 |
33 36
|
oveqan12d |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → ( ( 𝐻 ‘ 𝑋 ) + ( 𝐻 ‘ 𝑌 ) ) = ( ( ℂfld Σg 𝑋 ) + ( ℂfld Σg 𝑌 ) ) ) |
| 38 |
25 30 37
|
3eqtr4d |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → ( 𝐻 ‘ ( 𝑋 ∘f + 𝑌 ) ) = ( ( 𝐻 ‘ 𝑋 ) + ( 𝐻 ‘ 𝑌 ) ) ) |