| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tglineintmo.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | tglineintmo.i |  |-  I = ( Itv ` G ) | 
						
							| 3 |  | tglineintmo.l |  |-  L = ( LineG ` G ) | 
						
							| 4 |  | tglineintmo.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 5 |  | tglineinteq.a |  |-  ( ph -> A e. P ) | 
						
							| 6 |  | tglineinteq.b |  |-  ( ph -> B e. P ) | 
						
							| 7 |  | tglineinteq.c |  |-  ( ph -> C e. P ) | 
						
							| 8 |  | tglineinteq.d |  |-  ( ph -> D e. P ) | 
						
							| 9 |  | tglineinteq.e |  |-  ( ph -> -. ( A e. ( B L C ) \/ B = C ) ) | 
						
							| 10 | 1 2 3 4 5 6 7 9 | ncolne1 |  |-  ( ph -> A =/= B ) | 
						
							| 11 | 1 2 3 4 5 6 10 | tglinerflx1 |  |-  ( ph -> A e. ( A L B ) ) | 
						
							| 12 |  | simplr |  |-  ( ( ( ph /\ C = D ) /\ A e. ( C L D ) ) -> C = D ) | 
						
							| 13 | 4 | adantr |  |-  ( ( ph /\ A e. ( C L D ) ) -> G e. TarskiG ) | 
						
							| 14 | 7 | adantr |  |-  ( ( ph /\ A e. ( C L D ) ) -> C e. P ) | 
						
							| 15 | 8 | adantr |  |-  ( ( ph /\ A e. ( C L D ) ) -> D e. P ) | 
						
							| 16 |  | simpr |  |-  ( ( ph /\ A e. ( C L D ) ) -> A e. ( C L D ) ) | 
						
							| 17 | 1 3 2 13 14 15 16 | tglngne |  |-  ( ( ph /\ A e. ( C L D ) ) -> C =/= D ) | 
						
							| 18 | 17 | adantlr |  |-  ( ( ( ph /\ C = D ) /\ A e. ( C L D ) ) -> C =/= D ) | 
						
							| 19 | 18 | neneqd |  |-  ( ( ( ph /\ C = D ) /\ A e. ( C L D ) ) -> -. C = D ) | 
						
							| 20 | 12 19 | pm2.65da |  |-  ( ( ph /\ C = D ) -> -. A e. ( C L D ) ) | 
						
							| 21 |  | nelne1 |  |-  ( ( A e. ( A L B ) /\ -. A e. ( C L D ) ) -> ( A L B ) =/= ( C L D ) ) | 
						
							| 22 | 11 20 21 | syl2an2r |  |-  ( ( ph /\ C = D ) -> ( A L B ) =/= ( C L D ) ) | 
						
							| 23 | 4 | ad2antrr |  |-  ( ( ( ph /\ C =/= D ) /\ ( A L B ) = ( C L D ) ) -> G e. TarskiG ) | 
						
							| 24 | 6 | ad2antrr |  |-  ( ( ( ph /\ C =/= D ) /\ ( A L B ) = ( C L D ) ) -> B e. P ) | 
						
							| 25 | 7 | ad2antrr |  |-  ( ( ( ph /\ C =/= D ) /\ ( A L B ) = ( C L D ) ) -> C e. P ) | 
						
							| 26 | 5 | ad2antrr |  |-  ( ( ( ph /\ C =/= D ) /\ ( A L B ) = ( C L D ) ) -> A e. P ) | 
						
							| 27 |  | pm2.46 |  |-  ( -. ( A e. ( B L C ) \/ B = C ) -> -. B = C ) | 
						
							| 28 | 9 27 | syl |  |-  ( ph -> -. B = C ) | 
						
							| 29 | 28 | neqned |  |-  ( ph -> B =/= C ) | 
						
							| 30 | 29 | ad2antrr |  |-  ( ( ( ph /\ C =/= D ) /\ ( A L B ) = ( C L D ) ) -> B =/= C ) | 
						
							| 31 | 8 | ad2antrr |  |-  ( ( ( ph /\ C =/= D ) /\ ( A L B ) = ( C L D ) ) -> D e. P ) | 
						
							| 32 |  | simplr |  |-  ( ( ( ph /\ C =/= D ) /\ ( A L B ) = ( C L D ) ) -> C =/= D ) | 
						
							| 33 | 1 2 3 23 25 31 32 | tglinerflx1 |  |-  ( ( ( ph /\ C =/= D ) /\ ( A L B ) = ( C L D ) ) -> C e. ( C L D ) ) | 
						
							| 34 |  | simpr |  |-  ( ( ( ph /\ C =/= D ) /\ ( A L B ) = ( C L D ) ) -> ( A L B ) = ( C L D ) ) | 
						
							| 35 | 33 34 | eleqtrrd |  |-  ( ( ( ph /\ C =/= D ) /\ ( A L B ) = ( C L D ) ) -> C e. ( A L B ) ) | 
						
							| 36 | 1 3 2 23 26 24 35 | tglngne |  |-  ( ( ( ph /\ C =/= D ) /\ ( A L B ) = ( C L D ) ) -> A =/= B ) | 
						
							| 37 | 1 2 3 23 24 25 26 30 35 36 | lnrot1 |  |-  ( ( ( ph /\ C =/= D ) /\ ( A L B ) = ( C L D ) ) -> A e. ( B L C ) ) | 
						
							| 38 | 37 | orcd |  |-  ( ( ( ph /\ C =/= D ) /\ ( A L B ) = ( C L D ) ) -> ( A e. ( B L C ) \/ B = C ) ) | 
						
							| 39 | 9 | ad2antrr |  |-  ( ( ( ph /\ C =/= D ) /\ ( A L B ) = ( C L D ) ) -> -. ( A e. ( B L C ) \/ B = C ) ) | 
						
							| 40 | 38 39 | pm2.65da |  |-  ( ( ph /\ C =/= D ) -> -. ( A L B ) = ( C L D ) ) | 
						
							| 41 | 40 | neqned |  |-  ( ( ph /\ C =/= D ) -> ( A L B ) =/= ( C L D ) ) | 
						
							| 42 | 22 41 | pm2.61dane |  |-  ( ph -> ( A L B ) =/= ( C L D ) ) |