| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tglineintmo.p |
|- P = ( Base ` G ) |
| 2 |
|
tglineintmo.i |
|- I = ( Itv ` G ) |
| 3 |
|
tglineintmo.l |
|- L = ( LineG ` G ) |
| 4 |
|
tglineintmo.g |
|- ( ph -> G e. TarskiG ) |
| 5 |
|
tglineinteq.a |
|- ( ph -> A e. P ) |
| 6 |
|
tglineinteq.b |
|- ( ph -> B e. P ) |
| 7 |
|
tglineinteq.c |
|- ( ph -> C e. P ) |
| 8 |
|
tglineinteq.d |
|- ( ph -> D e. P ) |
| 9 |
|
tglineinteq.e |
|- ( ph -> -. ( A e. ( B L C ) \/ B = C ) ) |
| 10 |
1 2 3 4 5 6 7 9
|
ncolne1 |
|- ( ph -> A =/= B ) |
| 11 |
1 2 3 4 5 6 10
|
tglinerflx1 |
|- ( ph -> A e. ( A L B ) ) |
| 12 |
|
simplr |
|- ( ( ( ph /\ C = D ) /\ A e. ( C L D ) ) -> C = D ) |
| 13 |
4
|
adantr |
|- ( ( ph /\ A e. ( C L D ) ) -> G e. TarskiG ) |
| 14 |
7
|
adantr |
|- ( ( ph /\ A e. ( C L D ) ) -> C e. P ) |
| 15 |
8
|
adantr |
|- ( ( ph /\ A e. ( C L D ) ) -> D e. P ) |
| 16 |
|
simpr |
|- ( ( ph /\ A e. ( C L D ) ) -> A e. ( C L D ) ) |
| 17 |
1 3 2 13 14 15 16
|
tglngne |
|- ( ( ph /\ A e. ( C L D ) ) -> C =/= D ) |
| 18 |
17
|
adantlr |
|- ( ( ( ph /\ C = D ) /\ A e. ( C L D ) ) -> C =/= D ) |
| 19 |
18
|
neneqd |
|- ( ( ( ph /\ C = D ) /\ A e. ( C L D ) ) -> -. C = D ) |
| 20 |
12 19
|
pm2.65da |
|- ( ( ph /\ C = D ) -> -. A e. ( C L D ) ) |
| 21 |
|
nelne1 |
|- ( ( A e. ( A L B ) /\ -. A e. ( C L D ) ) -> ( A L B ) =/= ( C L D ) ) |
| 22 |
11 20 21
|
syl2an2r |
|- ( ( ph /\ C = D ) -> ( A L B ) =/= ( C L D ) ) |
| 23 |
4
|
ad2antrr |
|- ( ( ( ph /\ C =/= D ) /\ ( A L B ) = ( C L D ) ) -> G e. TarskiG ) |
| 24 |
6
|
ad2antrr |
|- ( ( ( ph /\ C =/= D ) /\ ( A L B ) = ( C L D ) ) -> B e. P ) |
| 25 |
7
|
ad2antrr |
|- ( ( ( ph /\ C =/= D ) /\ ( A L B ) = ( C L D ) ) -> C e. P ) |
| 26 |
5
|
ad2antrr |
|- ( ( ( ph /\ C =/= D ) /\ ( A L B ) = ( C L D ) ) -> A e. P ) |
| 27 |
|
pm2.46 |
|- ( -. ( A e. ( B L C ) \/ B = C ) -> -. B = C ) |
| 28 |
9 27
|
syl |
|- ( ph -> -. B = C ) |
| 29 |
28
|
neqned |
|- ( ph -> B =/= C ) |
| 30 |
29
|
ad2antrr |
|- ( ( ( ph /\ C =/= D ) /\ ( A L B ) = ( C L D ) ) -> B =/= C ) |
| 31 |
8
|
ad2antrr |
|- ( ( ( ph /\ C =/= D ) /\ ( A L B ) = ( C L D ) ) -> D e. P ) |
| 32 |
|
simplr |
|- ( ( ( ph /\ C =/= D ) /\ ( A L B ) = ( C L D ) ) -> C =/= D ) |
| 33 |
1 2 3 23 25 31 32
|
tglinerflx1 |
|- ( ( ( ph /\ C =/= D ) /\ ( A L B ) = ( C L D ) ) -> C e. ( C L D ) ) |
| 34 |
|
simpr |
|- ( ( ( ph /\ C =/= D ) /\ ( A L B ) = ( C L D ) ) -> ( A L B ) = ( C L D ) ) |
| 35 |
33 34
|
eleqtrrd |
|- ( ( ( ph /\ C =/= D ) /\ ( A L B ) = ( C L D ) ) -> C e. ( A L B ) ) |
| 36 |
1 3 2 23 26 24 35
|
tglngne |
|- ( ( ( ph /\ C =/= D ) /\ ( A L B ) = ( C L D ) ) -> A =/= B ) |
| 37 |
1 2 3 23 24 25 26 30 35 36
|
lnrot1 |
|- ( ( ( ph /\ C =/= D ) /\ ( A L B ) = ( C L D ) ) -> A e. ( B L C ) ) |
| 38 |
37
|
orcd |
|- ( ( ( ph /\ C =/= D ) /\ ( A L B ) = ( C L D ) ) -> ( A e. ( B L C ) \/ B = C ) ) |
| 39 |
9
|
ad2antrr |
|- ( ( ( ph /\ C =/= D ) /\ ( A L B ) = ( C L D ) ) -> -. ( A e. ( B L C ) \/ B = C ) ) |
| 40 |
38 39
|
pm2.65da |
|- ( ( ph /\ C =/= D ) -> -. ( A L B ) = ( C L D ) ) |
| 41 |
40
|
neqned |
|- ( ( ph /\ C =/= D ) -> ( A L B ) =/= ( C L D ) ) |
| 42 |
22 41
|
pm2.61dane |
|- ( ph -> ( A L B ) =/= ( C L D ) ) |