Step |
Hyp |
Ref |
Expression |
1 |
|
totprobd.1 |
|- ( ph -> P e. Prob ) |
2 |
|
totprobd.2 |
|- ( ph -> A e. dom P ) |
3 |
|
totprobd.3 |
|- ( ph -> B e. ~P dom P ) |
4 |
|
totprobd.4 |
|- ( ph -> U. B = U. dom P ) |
5 |
|
totprobd.5 |
|- ( ph -> B ~<_ _om ) |
6 |
|
totprobd.6 |
|- ( ph -> Disj_ b e. B b ) |
7 |
|
elssuni |
|- ( A e. dom P -> A C_ U. dom P ) |
8 |
2 7
|
syl |
|- ( ph -> A C_ U. dom P ) |
9 |
8 4
|
sseqtrrd |
|- ( ph -> A C_ U. B ) |
10 |
|
sseqin2 |
|- ( A C_ U. B <-> ( U. B i^i A ) = A ) |
11 |
9 10
|
sylib |
|- ( ph -> ( U. B i^i A ) = A ) |
12 |
11
|
fveq2d |
|- ( ph -> ( P ` ( U. B i^i A ) ) = ( P ` A ) ) |
13 |
|
domprobmeas |
|- ( P e. Prob -> P e. ( measures ` dom P ) ) |
14 |
1 13
|
syl |
|- ( ph -> P e. ( measures ` dom P ) ) |
15 |
|
measinb |
|- ( ( P e. ( measures ` dom P ) /\ A e. dom P ) -> ( c e. dom P |-> ( P ` ( c i^i A ) ) ) e. ( measures ` dom P ) ) |
16 |
14 2 15
|
syl2anc |
|- ( ph -> ( c e. dom P |-> ( P ` ( c i^i A ) ) ) e. ( measures ` dom P ) ) |
17 |
|
measvun |
|- ( ( ( c e. dom P |-> ( P ` ( c i^i A ) ) ) e. ( measures ` dom P ) /\ B e. ~P dom P /\ ( B ~<_ _om /\ Disj_ b e. B b ) ) -> ( ( c e. dom P |-> ( P ` ( c i^i A ) ) ) ` U. B ) = sum* b e. B ( ( c e. dom P |-> ( P ` ( c i^i A ) ) ) ` b ) ) |
18 |
16 3 5 6 17
|
syl112anc |
|- ( ph -> ( ( c e. dom P |-> ( P ` ( c i^i A ) ) ) ` U. B ) = sum* b e. B ( ( c e. dom P |-> ( P ` ( c i^i A ) ) ) ` b ) ) |
19 |
|
eqidd |
|- ( ph -> ( c e. dom P |-> ( P ` ( c i^i A ) ) ) = ( c e. dom P |-> ( P ` ( c i^i A ) ) ) ) |
20 |
|
simpr |
|- ( ( ph /\ c = U. B ) -> c = U. B ) |
21 |
20
|
ineq1d |
|- ( ( ph /\ c = U. B ) -> ( c i^i A ) = ( U. B i^i A ) ) |
22 |
21
|
fveq2d |
|- ( ( ph /\ c = U. B ) -> ( P ` ( c i^i A ) ) = ( P ` ( U. B i^i A ) ) ) |
23 |
|
domprobsiga |
|- ( P e. Prob -> dom P e. U. ran sigAlgebra ) |
24 |
1 23
|
syl |
|- ( ph -> dom P e. U. ran sigAlgebra ) |
25 |
|
sigaclcu |
|- ( ( dom P e. U. ran sigAlgebra /\ B e. ~P dom P /\ B ~<_ _om ) -> U. B e. dom P ) |
26 |
24 3 5 25
|
syl3anc |
|- ( ph -> U. B e. dom P ) |
27 |
|
inelsiga |
|- ( ( dom P e. U. ran sigAlgebra /\ U. B e. dom P /\ A e. dom P ) -> ( U. B i^i A ) e. dom P ) |
28 |
24 26 2 27
|
syl3anc |
|- ( ph -> ( U. B i^i A ) e. dom P ) |
29 |
|
prob01 |
|- ( ( P e. Prob /\ ( U. B i^i A ) e. dom P ) -> ( P ` ( U. B i^i A ) ) e. ( 0 [,] 1 ) ) |
30 |
1 28 29
|
syl2anc |
|- ( ph -> ( P ` ( U. B i^i A ) ) e. ( 0 [,] 1 ) ) |
31 |
19 22 26 30
|
fvmptd |
|- ( ph -> ( ( c e. dom P |-> ( P ` ( c i^i A ) ) ) ` U. B ) = ( P ` ( U. B i^i A ) ) ) |
32 |
|
eqidd |
|- ( ( ph /\ b e. B ) -> ( c e. dom P |-> ( P ` ( c i^i A ) ) ) = ( c e. dom P |-> ( P ` ( c i^i A ) ) ) ) |
33 |
|
simpr |
|- ( ( ( ph /\ b e. B ) /\ c = b ) -> c = b ) |
34 |
33
|
ineq1d |
|- ( ( ( ph /\ b e. B ) /\ c = b ) -> ( c i^i A ) = ( b i^i A ) ) |
35 |
34
|
fveq2d |
|- ( ( ( ph /\ b e. B ) /\ c = b ) -> ( P ` ( c i^i A ) ) = ( P ` ( b i^i A ) ) ) |
36 |
|
simpr |
|- ( ( ph /\ b e. B ) -> b e. B ) |
37 |
3
|
adantr |
|- ( ( ph /\ b e. B ) -> B e. ~P dom P ) |
38 |
|
elelpwi |
|- ( ( b e. B /\ B e. ~P dom P ) -> b e. dom P ) |
39 |
36 37 38
|
syl2anc |
|- ( ( ph /\ b e. B ) -> b e. dom P ) |
40 |
1
|
adantr |
|- ( ( ph /\ b e. B ) -> P e. Prob ) |
41 |
24
|
adantr |
|- ( ( ph /\ b e. B ) -> dom P e. U. ran sigAlgebra ) |
42 |
2
|
adantr |
|- ( ( ph /\ b e. B ) -> A e. dom P ) |
43 |
|
inelsiga |
|- ( ( dom P e. U. ran sigAlgebra /\ b e. dom P /\ A e. dom P ) -> ( b i^i A ) e. dom P ) |
44 |
41 39 42 43
|
syl3anc |
|- ( ( ph /\ b e. B ) -> ( b i^i A ) e. dom P ) |
45 |
|
prob01 |
|- ( ( P e. Prob /\ ( b i^i A ) e. dom P ) -> ( P ` ( b i^i A ) ) e. ( 0 [,] 1 ) ) |
46 |
40 44 45
|
syl2anc |
|- ( ( ph /\ b e. B ) -> ( P ` ( b i^i A ) ) e. ( 0 [,] 1 ) ) |
47 |
32 35 39 46
|
fvmptd |
|- ( ( ph /\ b e. B ) -> ( ( c e. dom P |-> ( P ` ( c i^i A ) ) ) ` b ) = ( P ` ( b i^i A ) ) ) |
48 |
47
|
esumeq2dv |
|- ( ph -> sum* b e. B ( ( c e. dom P |-> ( P ` ( c i^i A ) ) ) ` b ) = sum* b e. B ( P ` ( b i^i A ) ) ) |
49 |
18 31 48
|
3eqtr3d |
|- ( ph -> ( P ` ( U. B i^i A ) ) = sum* b e. B ( P ` ( b i^i A ) ) ) |
50 |
12 49
|
eqtr3d |
|- ( ph -> ( P ` A ) = sum* b e. B ( P ` ( b i^i A ) ) ) |