Step |
Hyp |
Ref |
Expression |
1 |
|
totprobd.1 |
⊢ ( 𝜑 → 𝑃 ∈ Prob ) |
2 |
|
totprobd.2 |
⊢ ( 𝜑 → 𝐴 ∈ dom 𝑃 ) |
3 |
|
totprobd.3 |
⊢ ( 𝜑 → 𝐵 ∈ 𝒫 dom 𝑃 ) |
4 |
|
totprobd.4 |
⊢ ( 𝜑 → ∪ 𝐵 = ∪ dom 𝑃 ) |
5 |
|
totprobd.5 |
⊢ ( 𝜑 → 𝐵 ≼ ω ) |
6 |
|
totprobd.6 |
⊢ ( 𝜑 → Disj 𝑏 ∈ 𝐵 𝑏 ) |
7 |
|
elssuni |
⊢ ( 𝐴 ∈ dom 𝑃 → 𝐴 ⊆ ∪ dom 𝑃 ) |
8 |
2 7
|
syl |
⊢ ( 𝜑 → 𝐴 ⊆ ∪ dom 𝑃 ) |
9 |
8 4
|
sseqtrrd |
⊢ ( 𝜑 → 𝐴 ⊆ ∪ 𝐵 ) |
10 |
|
sseqin2 |
⊢ ( 𝐴 ⊆ ∪ 𝐵 ↔ ( ∪ 𝐵 ∩ 𝐴 ) = 𝐴 ) |
11 |
9 10
|
sylib |
⊢ ( 𝜑 → ( ∪ 𝐵 ∩ 𝐴 ) = 𝐴 ) |
12 |
11
|
fveq2d |
⊢ ( 𝜑 → ( 𝑃 ‘ ( ∪ 𝐵 ∩ 𝐴 ) ) = ( 𝑃 ‘ 𝐴 ) ) |
13 |
|
domprobmeas |
⊢ ( 𝑃 ∈ Prob → 𝑃 ∈ ( measures ‘ dom 𝑃 ) ) |
14 |
1 13
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ( measures ‘ dom 𝑃 ) ) |
15 |
|
measinb |
⊢ ( ( 𝑃 ∈ ( measures ‘ dom 𝑃 ) ∧ 𝐴 ∈ dom 𝑃 ) → ( 𝑐 ∈ dom 𝑃 ↦ ( 𝑃 ‘ ( 𝑐 ∩ 𝐴 ) ) ) ∈ ( measures ‘ dom 𝑃 ) ) |
16 |
14 2 15
|
syl2anc |
⊢ ( 𝜑 → ( 𝑐 ∈ dom 𝑃 ↦ ( 𝑃 ‘ ( 𝑐 ∩ 𝐴 ) ) ) ∈ ( measures ‘ dom 𝑃 ) ) |
17 |
|
measvun |
⊢ ( ( ( 𝑐 ∈ dom 𝑃 ↦ ( 𝑃 ‘ ( 𝑐 ∩ 𝐴 ) ) ) ∈ ( measures ‘ dom 𝑃 ) ∧ 𝐵 ∈ 𝒫 dom 𝑃 ∧ ( 𝐵 ≼ ω ∧ Disj 𝑏 ∈ 𝐵 𝑏 ) ) → ( ( 𝑐 ∈ dom 𝑃 ↦ ( 𝑃 ‘ ( 𝑐 ∩ 𝐴 ) ) ) ‘ ∪ 𝐵 ) = Σ* 𝑏 ∈ 𝐵 ( ( 𝑐 ∈ dom 𝑃 ↦ ( 𝑃 ‘ ( 𝑐 ∩ 𝐴 ) ) ) ‘ 𝑏 ) ) |
18 |
16 3 5 6 17
|
syl112anc |
⊢ ( 𝜑 → ( ( 𝑐 ∈ dom 𝑃 ↦ ( 𝑃 ‘ ( 𝑐 ∩ 𝐴 ) ) ) ‘ ∪ 𝐵 ) = Σ* 𝑏 ∈ 𝐵 ( ( 𝑐 ∈ dom 𝑃 ↦ ( 𝑃 ‘ ( 𝑐 ∩ 𝐴 ) ) ) ‘ 𝑏 ) ) |
19 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑐 ∈ dom 𝑃 ↦ ( 𝑃 ‘ ( 𝑐 ∩ 𝐴 ) ) ) = ( 𝑐 ∈ dom 𝑃 ↦ ( 𝑃 ‘ ( 𝑐 ∩ 𝐴 ) ) ) ) |
20 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑐 = ∪ 𝐵 ) → 𝑐 = ∪ 𝐵 ) |
21 |
20
|
ineq1d |
⊢ ( ( 𝜑 ∧ 𝑐 = ∪ 𝐵 ) → ( 𝑐 ∩ 𝐴 ) = ( ∪ 𝐵 ∩ 𝐴 ) ) |
22 |
21
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑐 = ∪ 𝐵 ) → ( 𝑃 ‘ ( 𝑐 ∩ 𝐴 ) ) = ( 𝑃 ‘ ( ∪ 𝐵 ∩ 𝐴 ) ) ) |
23 |
|
domprobsiga |
⊢ ( 𝑃 ∈ Prob → dom 𝑃 ∈ ∪ ran sigAlgebra ) |
24 |
1 23
|
syl |
⊢ ( 𝜑 → dom 𝑃 ∈ ∪ ran sigAlgebra ) |
25 |
|
sigaclcu |
⊢ ( ( dom 𝑃 ∈ ∪ ran sigAlgebra ∧ 𝐵 ∈ 𝒫 dom 𝑃 ∧ 𝐵 ≼ ω ) → ∪ 𝐵 ∈ dom 𝑃 ) |
26 |
24 3 5 25
|
syl3anc |
⊢ ( 𝜑 → ∪ 𝐵 ∈ dom 𝑃 ) |
27 |
|
inelsiga |
⊢ ( ( dom 𝑃 ∈ ∪ ran sigAlgebra ∧ ∪ 𝐵 ∈ dom 𝑃 ∧ 𝐴 ∈ dom 𝑃 ) → ( ∪ 𝐵 ∩ 𝐴 ) ∈ dom 𝑃 ) |
28 |
24 26 2 27
|
syl3anc |
⊢ ( 𝜑 → ( ∪ 𝐵 ∩ 𝐴 ) ∈ dom 𝑃 ) |
29 |
|
prob01 |
⊢ ( ( 𝑃 ∈ Prob ∧ ( ∪ 𝐵 ∩ 𝐴 ) ∈ dom 𝑃 ) → ( 𝑃 ‘ ( ∪ 𝐵 ∩ 𝐴 ) ) ∈ ( 0 [,] 1 ) ) |
30 |
1 28 29
|
syl2anc |
⊢ ( 𝜑 → ( 𝑃 ‘ ( ∪ 𝐵 ∩ 𝐴 ) ) ∈ ( 0 [,] 1 ) ) |
31 |
19 22 26 30
|
fvmptd |
⊢ ( 𝜑 → ( ( 𝑐 ∈ dom 𝑃 ↦ ( 𝑃 ‘ ( 𝑐 ∩ 𝐴 ) ) ) ‘ ∪ 𝐵 ) = ( 𝑃 ‘ ( ∪ 𝐵 ∩ 𝐴 ) ) ) |
32 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑐 ∈ dom 𝑃 ↦ ( 𝑃 ‘ ( 𝑐 ∩ 𝐴 ) ) ) = ( 𝑐 ∈ dom 𝑃 ↦ ( 𝑃 ‘ ( 𝑐 ∩ 𝐴 ) ) ) ) |
33 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 = 𝑏 ) → 𝑐 = 𝑏 ) |
34 |
33
|
ineq1d |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 = 𝑏 ) → ( 𝑐 ∩ 𝐴 ) = ( 𝑏 ∩ 𝐴 ) ) |
35 |
34
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 = 𝑏 ) → ( 𝑃 ‘ ( 𝑐 ∩ 𝐴 ) ) = ( 𝑃 ‘ ( 𝑏 ∩ 𝐴 ) ) ) |
36 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ 𝐵 ) |
37 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 𝐵 ∈ 𝒫 dom 𝑃 ) |
38 |
|
elelpwi |
⊢ ( ( 𝑏 ∈ 𝐵 ∧ 𝐵 ∈ 𝒫 dom 𝑃 ) → 𝑏 ∈ dom 𝑃 ) |
39 |
36 37 38
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ dom 𝑃 ) |
40 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 𝑃 ∈ Prob ) |
41 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → dom 𝑃 ∈ ∪ ran sigAlgebra ) |
42 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 𝐴 ∈ dom 𝑃 ) |
43 |
|
inelsiga |
⊢ ( ( dom 𝑃 ∈ ∪ ran sigAlgebra ∧ 𝑏 ∈ dom 𝑃 ∧ 𝐴 ∈ dom 𝑃 ) → ( 𝑏 ∩ 𝐴 ) ∈ dom 𝑃 ) |
44 |
41 39 42 43
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑏 ∩ 𝐴 ) ∈ dom 𝑃 ) |
45 |
|
prob01 |
⊢ ( ( 𝑃 ∈ Prob ∧ ( 𝑏 ∩ 𝐴 ) ∈ dom 𝑃 ) → ( 𝑃 ‘ ( 𝑏 ∩ 𝐴 ) ) ∈ ( 0 [,] 1 ) ) |
46 |
40 44 45
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑃 ‘ ( 𝑏 ∩ 𝐴 ) ) ∈ ( 0 [,] 1 ) ) |
47 |
32 35 39 46
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝑐 ∈ dom 𝑃 ↦ ( 𝑃 ‘ ( 𝑐 ∩ 𝐴 ) ) ) ‘ 𝑏 ) = ( 𝑃 ‘ ( 𝑏 ∩ 𝐴 ) ) ) |
48 |
47
|
esumeq2dv |
⊢ ( 𝜑 → Σ* 𝑏 ∈ 𝐵 ( ( 𝑐 ∈ dom 𝑃 ↦ ( 𝑃 ‘ ( 𝑐 ∩ 𝐴 ) ) ) ‘ 𝑏 ) = Σ* 𝑏 ∈ 𝐵 ( 𝑃 ‘ ( 𝑏 ∩ 𝐴 ) ) ) |
49 |
18 31 48
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝑃 ‘ ( ∪ 𝐵 ∩ 𝐴 ) ) = Σ* 𝑏 ∈ 𝐵 ( 𝑃 ‘ ( 𝑏 ∩ 𝐴 ) ) ) |
50 |
12 49
|
eqtr3d |
⊢ ( 𝜑 → ( 𝑃 ‘ 𝐴 ) = Σ* 𝑏 ∈ 𝐵 ( 𝑃 ‘ ( 𝑏 ∩ 𝐴 ) ) ) |